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Abstract—Work on image super-resolution (SR), to construct
higher-resolution images starting from low-quality ones, has
focused primarily on reconstruction algorithms and specific
application domains. In this work, we aim at methods to aid
interpreting SR inner-working, with a view to improve explain-
ability. We propose a novel gradient-based attribution approach,
to provide interpretations from global and local perspectives,
dubbed glocal attribution map (GL-AM). After verification with
five different SR models, we show that GL-AM: (1) is a powerful
tool to understand the principles of SR networks from both
global and local views; (2) provides the consensus and variation
sensitivity of different models to the input; (3) is more effective
to emphasize the features captured by the attention mechanism
(for the SR model) through feature re-calibration; (4) is more
computationally efficient and more effective as the region of
interest increases.

Index Terms—explainable AI, super-resolution, data interpre-
tation, deep learning

I. INTRODUCTION

Deep learning has shown its power in the field of low-
level tasks such as image super-resolution (SR). With the
help of deep learning (DL), SR has surfaced as an in-
dispensable technological innovation, substantially elevating
the granularity and fidelity of images beyond their inherent
resolution [2]–[4], [19]. Despite the advances achieved by
deep learning in the domain of SR, it concurrently contends
with intrinsic complexities that confound its comprehensive
elucidation. For instance, we all know that deep learning is
deemed a ’black-box’ model, and it is often criticized for its
lack of transparency. It is, in fact, difficult to comprehend the
SR model’s transformation of input data into super-resolved
outputs. This opacity can limit trust and improvement of SR
tasks. Therefore, an in-depth study of the inner mechanisms
of these models can help us understand their limitations and
discover possible improvements for SR models.

Explainable Artificial Intelligence (XAI) [21] refers to the
methodologies and processes designed to make the mecha-
nisms and outcomes of DL algorithms and AI systems more
comprehensible and trustworthy for human operators. XAI is
paramount in sectors where critical decisions are made, such
as healthcare, finance, and environmental monitoring. In these
fields, the clarity surrounding the decision-making process of

AI systems is as crucial as the decisions themselves. However,
the development of XAI algorithms is kind of unbalanced
currently, with a greater focus on classification problems [1].
Most methods that visualize and highlight the regions of input
contributing most significantly to classification results, such
as Grad-CAM [10], focus on gradient-based class activation
mappings. Meanwhile, layer-wise relevance propagation [9]
decomposes predictions to understand contributions at the
neuron level.

These methods are not applicable to SR neural networks.
In particular, LAM [11] serves as an XAI method designed to
interpret the SR deep learning model by employing the inte-
grated path gradient. Nevertheless, LAM possesses limitations,
as it lacks the capability to delve into the internal workings of
the model, providing explanations solely for the influence of
specific features on the outcomes. Additionally, the computa-
tion involved in utilizing the integrated path gradient proves
to be relatively time-consuming.

In this paper, we proposed an XAI method from both global
and local views, dubbed glocal attribution map (GL-AM),
to interpret the deep learning SR model. Globally, GL-AM
elucidates the contributions of individual regions within the
image to the overall image SR reconstruction. Locally, GL-
AM identifies pixels with substantial influence on the SR
outcomes. Furthermore, by leveraging both the visualization
and quantitative results provided by GL-AM, we delve into the
reasons behind the varying performance levels of SR models
with different depths. We also explore how the attention mech-
anism contributes to the efficacy of SR models. Our findings
reveal that the attention mechanism significantly enhances
the performance of SR networks, allowing them to achieve
comparable or superior results with smaller receptive fields.
This is particularly evident when combined with functional re-
calibration, which further optimizes model efficiency. In Fig.
(1), we provide some general representative results. GL-AM
interprets the low-resolution input pixels that affect the SR
results by analyzing the feature map of each convolution layer
and its corresponding gradient, rather than using integral path
gradient, as shown in Fig. (1) (a) and (b).
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Fig. 1. This demo presents the results of the proposed attribution method GL-AM applied to the image super-resolution (SR) networks CARN [16]. Figure
(a) and (b) illustrate the importance of pixels that influence the reconstruction of both the region of interest (ROI) and the overall image. Higher intensity
(darker red pixels) indicates a greater influence on the SR outcomes.

II. RELATED WORK

Model explanation and model interpretation are two impor-
tant topics related to the field of artificial intelligence. Both
of them aim to increase the transparency and understanding
of neural networks. Because neural networks are often seen
as ’black boxes’ and their internal decision-making processes
are not transparent to the end user. Currently, there are works
that try to explore what happens inside the neural network and
visualize how the input data affect the outputs [6]–[8], [12],
[13]. However, much of this research has been in the service
of classification tasks.

Selvaraju et al. [10] proposed Gradient-weighted Class
Activation Mapping (Grad-CAM) to visualize the decision-
making process of convolutional neural networks (CNNs)
for classification tasks. Technically, this method highlights
the important regions in the image for predicting the class
by calculating the input importance based on gradient and
classification score. Simonyan et al. [9] proposed saliency
maps for visualizing and interpreting how convolutional neural
networks (CNNs) classify images and identify the features
they perceive as significant. Saliency maps are generated by
computing the gradient of the output category with respect to
the input image. This gradient implies how much the class
score affects the pixel’s value, thus indicating the pixel’s
importance in the network’s decision-making process. Pixels
with higher gradient values are believed to be more influential,
and their collective representation forms the saliency map,
visually illustrating the regions crucial for the classification
decision. Shrikumar et al. [14] proposed a novel gradient-based
interpreting method for CNNs (DeepLIFT), which attributes
importance to input features. DeepLIFT distinguishes itself
by comparing the activation of each neuron to its ’reference
activation’ and assigns contribution scores based on the dif-
ference, effectively handling scenarios where other methods
like gradient-based approaches fail, especially in networks
with non-linearities and saturation. The method computes the
contribution of each input feature by back-propagating the
differences in activation, rather than the gradient, thereby

providing a more precise and robust understanding of feature
importance, particularly in complex models with high non-
linearity.

However, many of the above studies cannot be directly
applied to SR neural networks. For example, to avoid the
problem of gradient saturation, Gu and Dong [11] proposed
local attribution maps (LAM) to interpret the low-resolution
input influence on super-solved output in super-resolution
tasks, which uses integral gradient. LAM takes the black
image, without any texture, as the baseline and interpolates
50 images to fully capture the input texture influence. This
granular analysis allows for the creation of maps that visually
represent the contribution of different regions of the input
image to the super-resolution process. This method helps in
understanding which specific features of the input are most
significant for the enhanced output, providing valuable insights
into the network’s functioning but with low efficiency. At the
same time, when increasing the size of the local area, the
region of interest loses its strong ability to interpret the model
from the local view.

III. METHOD

To start with, we clarify the local and global explanations
in our work. Typically, local explanations provide insights
into the decision-making process of a model for a specific
instance or prediction. Instead, the global explanations offer
an understanding of the overall behavior and decision logic of
a model, across all possible inputs [15]. However, we are more
concerned with which low-resolution input pixels affect the
reconstruction from the local view as well as the reconstruction
from the global view in the SR task. More specifically,
in our research, the local explanation aims at determining
which pixels are responsible for the reconstruction of the SR
image, e.g., which pixels contribute to the reconstruction of
the region of interest (ROI). On the other hand, the global
explanation determines how each part of the region affects the
reconstructed SR output. Inspired by the previous studies [10],
[11], herein we propose a novel gradient-based interpreting
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method, dubbed glocal attribution map (GL-AM), to interpret
the model for SR deep learning methods.

A. Local Attribution Map

We define an SR network F , mapping from the Rh×w 7→
Rsh×sw, with a scaling factor s. In our analysis, we interpret
the functionality of F by recognizing the presence of texture,
a specific feature in local areas of the reconstructed SR image
rather than focusing on pixel intensity. By contrast to using
pixel intensity, focusing on the texture helps to understand the
reconstructed high-resolution outputs which are perceptually
more accurate and visually pleasing. This is also the key
mission of interpreting the SR model.

In our work, we start by applying the same method as shown
in [11] to calculate the texture of an ROI having a window
size of l × l, denoted as TROI . We calculate the gradient
of the feature map of each network layer in relation to the
original inputs, as shown by the blue arrows in Fig. (2), and as
formulated in equation (1). In this way, GL-AM could focus
more on the sensitivity of each layer’s output to the model
input, which can more intuitively understand the importance
of different input pixels to model output.

gradlocali→in = g (TROI)i→in (1)

In equation (1), g()i→in is the function for calculating
the gradient of the layer i with respect to the input; and
gradlocali→in ∈ Rc×h×w, c, h, w denote the number of the
channels, the height and the width of the ROI, respectively. To
better demonstrate the detailed subtle changes of the SR neural
network model, we introduce consensus and variation to the
attention of the model. The main purpose of consensus is to
aggregate the results of multiple gradient calculations to obtain
a comprehensive gradient effect that emphasizes features that
appear consistently in all gradient maps. At the same time,
variation highlights the characteristics of changes between
different gradient maps, helping to identify areas where the
model is sensitive to input changes.

Then, we calculated the weights of gradlocali→in, W local
i→in ∈

Rc. So the highlighted gradlocali→in is denoted as gradlocalkeyi
∈

Rc,h,w, and gradlocalkeyi
= gradlocali→in×W local

i→in. Finally, the local
attribution map is calculated by equation (2).

Glocal =
n∑

i=0

gradlocalkeyi
+

n−1∑
i=1

(
gradlocalkeyi

− gradlocalkeyi−1

)
(2)

The grad-cam [10] utilizes only the product of the last
layer’s output and the weights of its gradient to emphasize
the key areas. However, this method cannot account for how
inputs are processed within the model because it only uses
the gradient from the last layer. To address this, GL-AM
extends the analysis to incorporate the weighted gradients
from each layer of the network. These weighted gradients are
combined across the various network layers to better capture
the cumulative impact of the different model parameters on
the output dimensions.

As delineated in equation (2), the first term represents the
consensus among all layers, while the second term captures
the cumulative variance of each layer. It is crucial to recognize
that the size of gradient maps can vary significantly between
different layers. Therefore, we employ the bicubic interpola-
tion method to resize all normalized gradients, gradlocalkeyi

, to
match the output dimensions. Subsequently, we normalize the
gradlocalkeyi

values to the range of [0, 1]. The pixel values of
Glocal represent the impact of all pixels on the construction of
the ROI; whereas the darker pixels (higher intensity) indicate
a stronger influence w.r.t. the SR results.

B. Global Attribution Map

We have implemented different computational methods to
generate the global attribution map. In contrast to the local
attribution map, we use gradient maps from subsequent layers
relative to earlier ones, which are applicable to nearly all
neural network architectures and more efficient as well, as
shown in the red arrow lines in equation (2). Similarly to
the local explanation, we first compute the global gradient,
gradglobalj→i , j = i + 1. However, for the global explanation,
we calculate the gradient of the output feature map for each
network layer in relation to its adjacent previous layer, as
detailed in equation (3).

gradglobalj→i = g (TGlobal)j→i (3)

In equation (3), TGlobal computes the texture of the feature
map from layer j → i, and the subscripts j = i + 1. And
gradglobalj→i ∈ RC,H,W , here, the capital C,H,W denotes the
channel number and the size during the global reconstruction.
Meanwhile, we still calculate W global

j→i ∈ RC , the weight of
gradglobalj→i , to help GL-AM capture the highlight of gradient
from the global view. This is denoted as gradglobalkeyj

∈ RC , and
gradglobalkeyj

= gradglobalj→i × W global
j→i . However, the difference

from the local explanation here is that we not only use the
gradient but also take the feature map of the layer j into
consideration. In this way, we could better understand the
real effect from input to output, instead of only exploring the
contributing pixels, as depicted in equation (4).

feaj→i
global = feaj × gradglobalkeyj

(4)

In (4), feaj is the feature map of layer j. Next, following
the same idea to distinguish the consensus as well as the
variance in each layer, we obtain the global attribution map,
Gglobal in (5).

Gglobal =
n∑

i=0

feaj→i
global +

n−1∑
j=1

(
feajglobal − feaj−1

global

)
(5)

IV. EXPERIMENTS

A. Settings

In our work, we collect images that are challenging for
SR networks as the test set for the following analysis from
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Fig. 2. Overview of how to calculate the gradients map of GL-AM. At the top of this figure are the notes. The blue arrows indicate how we calculate the
gradient maps for each layer relative to the inputs of the ROI, and the red arrows represent the method we calculate the gradient maps of each subsequent
layer relative to the previous layer for global reconstruction.

DIV2K [24] and Urban100 [25]. The images we chose exhibit
a low average PSNR score and significant discrepancies in
performance across various SR networks. The size of high-
resolution images is 256 × 256, and generate low-resolution
(input image) images with the size of 64 × 64 by bicubic
interpolation. Thus, the up-scaling factor in our work is 4.
When selecting metrics for quantitative evaluation for the SR
neural network, we follow the suggestion of Gu et al. [22]
and employ both PSNR and MSE as perceptual similarity
metrics and quantitative metrics, respectively. We apply GL-
AM to different SR neural networks, e.g., CARN, Residual
Dense Block Network (RRDBNet) [17], Residual Non-local
Attention Networks (RNAN) [19], Residual Channel Attention
Networks (RCAN) [20], and Second-order Attention Network
(SAN) [18]. With the exception of CARN and RRDBNet, the
other models all use the attention mechanism.

B. Local Attribution Map

1) General Interpretation: Fig. (3) shows the local inter-
pretation results of different models, CARN, RRDBNet, SAN,
RNAN, and RCAN. Take CARN as an example in Fig. (3), the
red pixels in the local attribution map represent the attributed
pixels that influence the reconstruction of the ROI, delineated
by the black box - darker pixels indicate a stronger influence
w.r.t. the SR results. The Sum is the pure local attribution map

without overlapping the input image, and it is the combination
of normalized ’Variation’ and normalized ’Consensus’. At last,
we show the diffusion index (DI), as well as the PSNR of the
ROI. A larger DI indicates that more pixels are involved in
the reconstruction.

In Fig. (3), the Sum of RRDBNet reveals that it possesses
the largest receptive field among all models, due to its deep
residual structure and a deeper structure - a key determinant
of the receptive field range. Furthermore, RNAN, RCAN, and
SAN have a smaller range of contributing pixels, and the pixels
are nearly all within the ROI, compared to the CARN and
RRDBNet during the local reconstruction. The red pixels have
a darker color and a certain texture, indicating that the model
using the attention mechanism has a stronger ability to capture,
and make use of texture details, compared with models not
having the attention mechanism, which means the attention
mechanism helps SR neural network model find more effective
information from a smaller receptive field.

Additionally, we employ the DI [11] to assess SR network
performance. DI is a metric that measures the range and
intensity of the pixels that have been taken into consideration
by SR networks, during image reconstruction. This offers
insights beyond MSE or PSNR. A high DI implies extensive
pixel consideration, as seen with RRDBNet’s broad receptive
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Fig. 3. Local attribution maps of 5 different models. The local attribution map is displayed by overlaying the Sum on the high-resolution image. Consensus
emphasizes the highlighting of important pixels that the model consistently agrees on across all the layers by accumulating gradient maps, which reflects the
model’s learning and reinforcement of common features. Variation emphasizes the model’s sensitivity to changes in inputs. Finally, a larger DI [11] indicates
more pixels are involved during the reconstruction.

field (DI: 17.2873) since it does not have a deeper network
structure. Attention-based models exhibit lower DI values even
if compared to CARN which is a shallower network model.
This verifies that the SR model using the attention mechanism
can achieve equivalent or even better performance by using a
smaller receptive field.

2) Insights of Attention Mechanism by Local Attribution
Map: The Variation in Fig. (3) highlights the model’s sen-
sitivity to changes in inputs, showcasing the unique capability
of each layer to explore different areas; in contrast, the
Consensus emphasizes pixels that consistently appear across
all gradient maps. It’s important to note that the Sum is the
normalized result of both Variation and Consensus. Therefore,
in the Sum, some values with very small variations may not
be displayed. Unlike RRDBNet and CARN, which do not
employ attention mechanisms, RNAN implements a non-local
attention mechanism to process information across the entire
image, resulting in a wider range of contributed pixels, as
evident in the corners of the Variation in Fig. (3). SAN utilizes
a second-order attention mechanism, leveraging second-order
feature statistics to capture more complex interactions between
features. This approach explains why the Variation of SAN is
particularly focused on regions rich in texture details, such
as the main body of skyscrapers, which provide extensive
information. Simultaneously, RCAN, employing feature re-
calibration, achieves a more stable attribution map from both
the Variation and Consensus aspects, and it records the highest
PSNR. In summary, in SR tasks, it is essential not only to
utilize information from a broader range but also to assign
different weights to various types of information.

C. Global Attribution Map

Fig. (4) illustrates the global attribution maps of different
models. According to the results, CARN and RRDBNet strug-
gle to capture hard areas, notably the main body of skyscrapers
with intensive textures, indicating that these models do not
utilize the input data appropriately. CARN allocates more
attention to skyscraper silhouettes, suggesting it struggles to
capture fine texture details due to its shallow network. Addi-
tionally, CARN ignores the hard areas with intensive textures,
specifically the top of the skyscraper. RRDBNet, with its
deeper structure, overly focuses on detailed textures and pays
equal attention to areas regardless of texture intensity, thereby
neglecting key aspects. This results in RRDBNet having the
highest MSE and lowest PSNR among the models, as shown
in Table (I). Notably, the global attribution map of models
using attention mechanisms shows that these mechanisms help
in capturing the silhouette of the building as well as much
of the texture details. From Fig. (4) RCAN, we observe that
RCAN’s global attribution map shows attention to both inten-
sively textured areas and edges of major objects, compared to
Fig. (4) RNAN and Fig. (4) SAN. This is due to RCAN’s
use of an attention mechanism, which selectively weights
various feature maps to suppress irrelevant information and
recalibrates features simultaneously, thus allowing it to utilize
input information more appropriately and effectively. RNAN
employs the non-local attention mechanism to capture long-
range dependencies in images, which allows for a distinct
and clear representation of edges and texture features. This
is also why RNAN’s global attribution map shows that it
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Fig. 4. Global attribution map of different models.

equally allocates attention across the edges and texture areas of
skyscrapers, compared to RCAN or SAN. On the other hand,
SAN employs second-order attention and reveals significantly
more details by capturing more complex and subtle features.
Yet, overemphasis on attention mechanisms can also lead to
negative effects, especially during global reconstruction, e.g.,
aliasing and noise, which results in a higher MSE (0.0892) for
SAN—the second-largest value after RRDBNet.

TABLE I
GLOBAL STATISTICS, PSNR AND MSE

Matrix
Model CARN RCAN RNAN RRDBNet SAN

PSNR 10.5000 10.5995 10.6625 10.4332 10.4938
MSE 0.0891 0.0871 0.0858 0.0905 0.0892

D. Complementary Findings

1) Attention Mechanism: Based on the analysis of GL-AM
in (IV-B) and (IV-C), the PSNR of global reconstruction from
different models is obviously lower than the ROI’s, which
means the SR model performs better in local reconstruction,
especially with the help of attention mechanism. However,
attention mechanisms don’t always perform well. For instance,
SAN, using a second-order attention mechanism, suffers from
the artifact at the edge of the global attribution map when
allocating the model’s attention to different areas, as shown in
Fig. (4) SAN. However, the SR model with the help of feature
re-calibration - e.g., RCAN - can better emphasize the features
of the hard areas and assign different weights to the features
of simple areas to distinguish them. That is the reason why the
global attribution map of RCAN appears more clearer details
from the building than the global attribution map of RNAN
and SAN in Fig. (4).

2) Comparison between GL-AM and LAM: LAM, which
relies on the integral gradient method, necessitates the gen-
eration of 50 interpolated images to adequately capture the
necessary information. This requirement leads to the execution
of the SR model 50 times, significantly increasing the com-
putational load, especially for models with deeper structures.
In contrast, GL-AM efficiently obtains the attribution map by

Fig. 5. Comparison between GL-AM and LAM from local view. LAM is
oversensitive to input. LAM may become ineffective when increasing ROI.

running the SR model just once, utilizing gradient calculations
at each layer.

In Fig. (5), we illustrate this comparison with attribution
maps from both GL-AM and LAM, viewed locally. The ROI,
highlighted in a red box in Fig. (5) (1), measures 64 × 64 pixels
in high resolution. To focus on attributed pixels, we employ
a threshold method where we exclude background areas by
using the average pixel value of the entire image as a threshold.
Since the background usually displays visual uniformity, pixel
values in these areas are densely clustered with low standard
deviation. Consequently, only pixels with values exceeding the
overall mean are included in the attribution map.

Fig. (5) (2) and (3) display the attribution maps generated by
GL-AM and LAM, respectively. In GL-AM, attributed pixels
constitute just 3.38% of the total pixel count, focusing on es-
sential details without overwhelming the visual representation.
Conversely, LAM’s attribution accounts for 23.94% of pixels,
with a dominance of red pixels that can detract from the visual
clarity and accuracy. This excessive sensitivity in LAM’s
approach, particularly noticeable as the ROI size increases, can
lead to an overemphasis on texture-based gradients, potentially
misleading in detailed image analysis

V. CONCLUSIONS

In this paper, we propose a useful global-local attribution
map (GL-AM), to visualize and understand principles of
SR neural networks. GL-AM explores which input pixels
contribute to the SR output. At the same time, GL-AM
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gives us some possible hints to improve the SR networks
or other low-level vision tasks. For instance, it is better to
use feature re-calibration when using the attention mechanism.
Compared to LAM, GL-AM is more computationally efficient
and still effective with the expansion of the ROI. However,
GL-AM is still a kind of preliminary results, which need to
be further improved. For instance, on the one hand, there
are many attributed pixels, but with low values in the local
attribution map. It is difficult to distinguish them from other
non-contributing pixels, e.g., when comparing the difference
between GL-AM and LAM. On the other hand, we need to
propose quantitative indicators to help us better explore and
understand the SR model, such as a tool similar to the diffusion
index in LAM.
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