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Abstract—In today’s dynamic business environment, compa-
nies face the dual challenge of reducing costs and enhancing
customer satisfaction. Traditional Facility Location Problem
(FLP) models often struggle to process the vast amounts of
data generated by modern supply chains, particularly during
disruptions. To address this issue, our study uses a mathematical
model designed for FLP, specifically considering facility dis-
ruptions. Leveraging big data, our model employs linearization
and relaxation methods to streamline computations, thereby
efficiently identifying optimal warehouse locations and capacities.
This approach accounts for storage limitations and effectively
manages extensive datasets, showcasing its capability to handle
disruptions. By integrating the risk of warehouse failure and
utilizing big data, our model provides a robust and resilient
framework for supply chain network design, leading to more
responsive and reliable supply chains. The model has been
validated through a real-world case study involving a Canadian
company, using the LINGO software package to derive solutions.

Index Terms—Supply Chain, FLP, Facility disruption, Relax-
ation method, resilient.

I. INTRODUCTION

In today’s dynamic business landscape, companies grapple
with the dual challenge of reducing costs and enhancing
customer satisfaction. Central to achieving this delicate bal-
ance is the design of efficient supply chain networks, where
decisions about the number, size, and location of facilities
play a pivotal role. Traditionally, facility location models
assumed that once facilities were built, they would remain
operational indefinitely. However, recent studies recognize a
critical reality: constructed facilities may face disruptions at
any time.

The advent of big data has transformed the way we ap-
proach facility location. As supply chains become increasingly
complex and interconnected, the sheer volume of data gen-
erated—from real-time demand fluctuations to transportation
routes and inventory levels—poses both opportunities and
challenges. Big data provides unprecedented insights into cus-
tomer behavior, market dynamics, and operational efficiency.
Yet, harnessing this wealth of information effectively remains
a formidable task.

Consider the disruptions that can impact facilities: natu-
ral disasters, power outages, labor strikes, and more. These
events can disrupt supply chains, rendering traditional facility

location models inadequate. For instance, during the 2008
electricity cut-off in China, companies faced production halts
due to warehouse unavailability. Similarly, the COVID-19
pandemic disrupted global supply chains, affecting companies
like Apple.

To address these challenges, our study introduces a math-
ematical model specifically similar to the one presented in
[1], tailored for facility location in the context of disruptions.
We focus on the challenges posed by big data considera-
tions. Besides determining the optimal location and size of
needed warehouses, our model assigns two warehouses to each
branch: a primary warehouse and a backup warehouse. The
primary warehouse serves the branch’s demand under normal
conditions, while the backup warehouse takes over during
disruptions. Importantly, we incorporate a relaxation method
to streamline computation. By relaxing certain variables, we
facilitate the identification of optimal warehouse locations and
sizes in the event of facility failure.

To test our proposed model, we examine a Canadian com-
pany operating within a disrupted supply chain context. Ana-
lyzing real-world data, we consider factors such as transporta-
tion costs, demand patterns, and facility failure probabilities.
Leveraging the LINGO software package, we aim to enhance
supply chain resilience by strategically locating facilities under
disruption risk while accounting for big data challenges.

One method for addressing the facility location problem
with large datasets is to utilize mathematical programming
techniques. This can include linear programming, integer
programming, mixed-integer programming, or non-linear pro-
gramming to model and solve the problem effectively. These
methods allow for the consideration of various constraints
and objectives, leading to optimal solutions. For instance,
Xu et al. [2] devised a hybrid algorithm merging genetic
algorithm, simulated annealing, and tabu search to address the
capacitated facility location problem with big data, yielding
enhanced performance compared to conventional methods.
Such methodologies are effective in managing extensive and
intricate problems, delivering high-quality solutions within
reasonable timeframes. Zhang et al. [3] developed a parallel
ant colony optimization algorithm tailored for large-scale
facility location problems, demonstrating impressive efficacy
on big datasets.
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In Liu’s work [4], a novel data-driven two-stage sparse
distributionally robust risk mixed-integer optimization model
was introduced for determining optimal locations of process-
ing plants and distribution centers in uncertain supply chain
networks, particularly under worst-case scenarios. This study
sheds light on how robust optimization can augment supply
chain optimization in uncertain conditions.

A significant advantage of leveraging big data in the fa-
cility location problem lies in the ability to make informed
decisions based on real-time data. Real-time insights into
customer demand, for instance, facilitate identifying optimal
facility locations to minimize transportation costs and enhance
customer service. Moreover, real-time data on transporta-
tion expenses, facility costs, and capacity constraints aid in
optimizing the facility location problem, thereby enhancing
performance. However, a challenge in addressing the facility
location problem with big data is ensuring the scalability of
algorithms. As data size increases, algorithms must manage
escalating computational complexities while providing pre-
cise solutions. This necessitates the utilization of parallel
processing, distributed computing, or other high-performance
computing techniques. For instance, Liu et al. [5] proposed a
hybrid tabu search algorithm for the capacitated facility loca-
tion problem with big data, implementing parallel computing
to achieve superior performance. Furthermore, privacy and
security considerations must be addressed when utilizing big
data in the facility location problem. Big data may encompass
sensitive information like customer data, financial records, and
strategic insights, necessitating protection against unauthorized
access or disclosure. Thus, implementing appropriate data
privacy and security measures is crucial to safeguarding data
confidentiality and integrity.

II. MATHEMATICAL MODEL

This section presents a mathematical framework designed to
optimize the network configuration of a two-tier supply chain,
incorporating warehouses and branches, through the use of
Mixed Integer Quadratic Optimization. The primary objective
of this model is to determine the most advantageous warehouse
locations and sizes while also assigning each branch to both
a primary and secondary warehouse to address the issue of
facility disruptions.

In this model, branches are identified by the index b, with
B representing the set of branches ranging from 1 to m.
Warehouse locations are indexed by w, where W encompasses
the set of locations ranging from 1 to n. Warehouse sizes are
denoted by s, with S covering the set of sizes from 1 to q,
each size corresponding to an area of As square feet.

Products are categorized into distinct groups, labeled by the
index j, and J represents the set of categories ranging from
1 to g. The index j is used when referring to specific product
categories.

We define the binary variable xs
w to represent the construc-

tion of a warehouse of size s at location w, with a value
of 1 if the warehouse is built and 0 otherwise. Similarly,
the binary variable yℓwbj indicates whether the demand for

product j at branch b is met by warehouse w at level ℓ, where
ℓ = 1 represents the primary warehouse assignment and ℓ = 2
indicates the secondary warehouse assignment. The vectors x
and y comprise all variables xs

w and yℓwbj , respectively.
The cost function comprises three components: fixed costs,

operational costs, and transportation costs. The fixed cost is
modeled as:

CF (x) =
∑
w

(fw + lw)
∑
s

Asxs
w. (1)

where fw represents the cost per square foot, in dollars, over
the planning horizon, with As indicating the number of square
feet for a warehouse of size s constructed at location w; and lw
denotes the cost per square foot, in dollars, over the planning
horizon, for industrial land at location w.

To model operational and transportation costs, we introduce
the common volume unit K for all product categories. The
demand for product j from branch b is dbjK. Let νsj be the
operational cost of handling one K of product j at a size s
warehouse. The dependence of the per unit operational cost on
warehouse size allows us to capture cost differences related to
economies of size and level of technology.

To account for the risk of warehouse failure in our opera-
tional and transportation costs, we must first model this risk.
Let 0 < pw < 1 represent the probability that warehouse
w fails. This probability is location-dependent, as the risk
of failure varies by location. For example, a warehouse in
a coastal city prone to tropical storms or near a fault line will
have a higher probability of failure compared to one situated
away from such natural hazards. Similarly, warehouses in po-
litically unstable areas or locations lacking reliable electricity
and water supplies will have a higher risk compared to those
in more stable and well-supported environments
If we do not account for risk, the primary warehouses will
supply their assigned branches and the operational cost is:∑

w,s,j

νsj
∑
b

(
dbj xs

w y1wbj

)
. (2)

Considering that the probability of warehouse w remaining
operational is (1− pw), the anticipated operational cost at the
primary warehouses can be represented as:

∑
w,s,j

νsj
∑
b

(
dbj xs

w y1wbj (1− pw)

)
. (3)

Considering w as the secondary warehouse, the probability
that it will supply its assigned branches is the same as the
failure probability of its corresponding primary warehouse,
which is: ∑

w′ ̸=w

(pw′ y1w′bj). (4)

Thus, the expected operational cost associated with the sec-
ondary warehouses is:
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∑
w,s,j

νsj
∑
b

(
dbj xs

w y2wbj

∑
w′ ̸=w

(pw′ y1w′bj)

)
. (5)

Putting equations (3) and (5) together gives the expected
operational cost function:

CO(x, y) =
∑
w,s,j

[
νsj

∑
b

dbj

(
xs
w y1wbj

(
1− pw

)
+ xs

w y2wbj

∑
w′ ̸=w

(pw′ y1w′bj)

)]
,

(6)

which is cubic in the binary variables.
The cost of transporting a product j depends on its volume

in K units, its physical characteristics, and the locations of the
branch and warehouse between which it is shipped. Let τwbj

denote the expense of transporting one unit of product j from
warehouse w to branch b. Employing a similar approach as
that used for operational cost calculation, the overall expected
transportation cost is:

CT (y) =
∑
w,b,j

[
dbj τwbj

(
y1wbj (1− pw)

+ y2wbj

∑
w′ ̸=w

(pw′ y1w′bj)

)]
.

(7)

The expected cost function is:

C(x, y) = CF (x) + CO(x, y) + CT (y). (8)

We now proceed with the formulation of constraints. Ini-
tially, we ensure: ∑

s

xs
w ≤ 1, ∀ w, (9)

to enforce a single size selection for each warehouse;∑
w

yℓwbj = 1, ∀ b, j, ℓ, (10)

to guarantee that each branch b is assigned a single primary
and a single secondary warehouse for supplying product j;

and

y1wbj + y2wbj ≤ 1, ∀ w, b, j, (11)

to prevent a warehouse from serving as both the primary and
secondary warehouse for product j at branch b.

Moving on to management constraints, we consider a pre-
determined upper bound, U , on the number of warehouses to
be constructed: ∑

s,w

xs
w ≤ U. (12)

To accommodate existing warehouses and those preselected
for construction at specific sizes, we impose:

xs
w = 1,∀ (w, s) ∈ B, (13)

where B ⊂ W × S, with W and S representing all indices
w and s, respectively. If such warehouses do not exist, then
B = ∅, and constraint (13) is omitted. Additionally, if there is
no limit on the number of warehouses to be built, constraint
(12) is also omitted.

Subsequently, we verify that the projected demand from
designated branches does not exceed the storage capacity V s

allocated for a warehouse of size s:

∑
b,j

dbj

(
y1wbj + y2wbj

∑
w′ ̸=w

(pw′y1w′bj)

)
≤

∑
s

V sxs
w, ∀ w.

(14)
In summary, the optimization problem seeks to minimize

the total cost while satisfying these constraints:

M: Minimize C(x, y) = CF (x) + CO(x, y) + CT (y)
Subject to: (9) - (14),

xs
w ∈ {0, 1}, ∀ s, w,

yℓwbj ∈ {0, 1}, ∀ w, b, j, ℓ.

The model, denoted as M, represents a binary, cubic
optimization challenge. If there exists only one product or
category, the subscripts j are omitted. The consistency of
model M was demonstrated in [1].

A. Linearization to Model M

Using the standard linearization [6], We initiate the standard
linearization process for the products xs

w yℓwbj . Let’s define:

zℓswbj = xs
w yℓwbj , ∀ s, w, b, j, ℓ,

and introduce the following 8nmqg constraints:

zℓswbj ≤ xs
w, (15)

zℓswbj ≤ yℓwbj , (16)

zℓswbj ≥ xs
w + yℓwbj − 1, and (17)

zℓswbj ≥ 0 . (18)

These constraints ensure that the continuous variable zℓswbj

takes binary values and equals 1 only if a warehouse of size
s, built at location w, supplies branch b at level ℓ with its
demand for product j. The reformulated expected operational
cost becomes:

CO(z, y) =
∑
w,s,j

[
νsj

∑
b

dbj

(
z1swbj (1− pw)

+ z2swbj

∑
w′ ̸=w

(pw′ y1w′bj)

)]
.

(19)
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As in [1], we proceed to linearize the quadratic terms
z2swbj , y

1
w′bj by defining:

P ∗ = max
w

pw and P∗ = min
w

pw. (20)

Let z2swbj

∑
w′ ̸=w

(pw′y1w′bj) = Qs
wbj , for all w, b, s, j. Then,

we have the following constraints:

0 ≤ Qs
wbj ≤ P ∗ z2swbj , (21)

and

∑
w′ ̸=w

(pw′ y1w′bj)−P ∗ (1−z2swbj) ≤ Qs
wbj ≤

∑
w′ ̸=w

(pw′ y1w′bj).

(22)
Similarly, we define y2wbj

∑
w′ ̸=w

(pw′ , y1w′bj) = Owbj , for all

w, b, j. The constraints for Owbj are:

0 ≤ Owbj ≤ P ∗ y2wbj , (23)

and

∑
w′ ̸=w

(pw′ , y1w′bj)−P ∗(1− y2wbj) ≤ Owbj ≤
∑
w′ ̸=w

(pw′ y1w′bj).

(24)
Now, let us define the operational cost function in terms of

z and Q:

CO(z,Q) =
∑
w,s,j

[
νsj

∑
b

dbj

(
z1swbj (1−pw)+Qs

wbj

)]
. (25)

The transportation cost function in terms of y and O is:

CT (y,O) =
∑
w,b,j

[
dbjτwbj

(
y1wbj(1− pw) +Owbj

)]
. (26)

Finally, the capacity constraints are:∑
b,j

dbj(y
1
wbj +Owbj) ≤

∑
s

V sxs
w, ∀ w. (27)

Our linearized model, LMLMLM , is represented as follows:

LMLMLM : Minimize C(x, y, z,Q,O) =
CF (x) + CO(z,Q) + CT (y,O)

Subject to: (9)− (13), (15)− (18),
(21)− (24), (27),
xs
w ∈ {0, 1}, ∀ s, w,

yℓwbj ∈ {0, 1}, ∀ w, b, j, ℓ.

Oshan and Caron [1] showed that, similar to M, LMLMLM
maintains consistency.

B. Relaxation to model LMLMLM

To relax model LMLMLM , we replace y1wbj ∈ {0, 1} with y1wbj ≥
0 to obtain

RLMRLMRLM : Minimize C(x, y, z,Q,O) =
CF (x) + CO(z,Q) + CT (y,O)

Subject to: (9)-(13), (15)-(18),
(21)-(24), (27),
xs
w ∈ {0, 1}, ∀ s, w,

y1wbj ≥ 0, ∀ w, b, j,

y2wbj ∈ {0, 1}, ∀ w, b, j.

Oshan and Caron [1] showed the consistency and validly of
Model RLMRLMRLM .
Table I presents the relative sizes of our three models.

Model M LMLMLM RLMRLMRLM
Binary Variables n(q + 2mg)− |B| − |J | n(q + 2mg)− |B| − |J | n(q +mg)− |B| − |J |
Continuous Variables 0 nmg(1 + 3q) nmg(2 + 3q)
Constraints 2(n+ nm) mr(2 + 5n+ 12nq) mg(2 + 6n+ 12nq)

+nmr + |B|+ |J |+ 1 +2n+ |B|+ |J | +2n+ |B|+ |J |

Table I: Comparison of Problem Size.

III. CANADIAN CASE STUDY

We expand upon the case study presented in [7] by inte-
grating the risk of warehouse failure. The company manages a
network comprising two warehouses, catering to 158 branches
spread across all Canadian provinces and procuring products
from global suppliers. With a diverse inventory of around
19,000 products varying in shapes, sizes, and densities, the
company aims to develop a two-tier supply chain model for
the forthcoming 15 years.

To streamline analysis, we adopted K to represent 1,000
cubic inches, converting all product demands into K units.
This simplification enabled us to concentrate on a single
component, eliminating the need for subscript j. Considering a
45-day inventory replenishment cycle at existing warehouses,
all costs and demands were computed for this duration.

Upon evaluation, we identified 34 potential warehouse sites
based on demographic and geographic factors, offering small
(s = 1), medium (s = 2), and large (s = 3) size options.
This encompassed the current warehouse locations (w = 1
and w = 2) operating at their current large scale (s = 3),
delineated as B = (1, 3), (2, 3).

The amortization of land and fabrication costs was spread
over 15 years at a 3% interest rate, with payments scheduled
every 45 days. Demand db in K units was extrapolated from
historical data. Internal estimations were utilized to determine
operational costs νs, transportation costs τwb, and storage
capacities V s. Following methodologies outlined in [8], [9],
failure probabilities pw were stochastically generated from a
uniform distribution U ∼ [0, 0.05].

We solved model LMLMLM using LINGO 20.0 x64 and Excel
365 running on an Intel i7 laptop with 16 GB of RAM and
a 3.30 GHz processor with four cores. The parameters were
stored in an Excel sheet. The model consisted of 64,564 vari-
ables, of which 10,844 were binary, highlighting the problem’s
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complexity. After 24 hours, which was the time limit for this
study, LINGO was unable to find a feasible solution for model
LMLMLM .

Given LINGO’s inability to find a feasible solution for
model LMLMLM , we turned to model RLMRLMRLM , where the variable
y1wbj is relaxed to be a non-negative continuous variable.
Unlike model LMLMLM , LINGO found the first feasible solution for
model RLMRLMRLM in less than 30 minutes. Table II shows that after
24 hours and approximately 43.5 million iterations, LINGO
was unable to find an optimal solution but did find a feasible
solution with a toal cost of 4.1 million and an optimality gap
of 8.88%. LINGO selected three additional warehouses to be
built, in addition to the existing two, comprising two large and
one small warehouse.

Table II: Computational Results for Model RLMRLMRLM

RLMRLMRLM
Model Class MILP

Total Variables 64,564
Binary Variables 5,472

Constraints 231,386
Iterations ×106 43.570

Time (Hours: Minutes: Seconds) 24:00:00
Best Objective ×106 4.1089

Objective Bound ×106 3.7478
Selected Warehouses (1, 3), (2, 3), (6, 3)

(ID, Size) (30, 3), and (33, 1)
Status Feasible

To pursue an optimal solution for model RLMRLMRLM , we consid-
ered relaxing the y2wbj variables. However, this could result in
assignments between non-built warehouses and branches. To
address this, we added the following constraint:

y2wbj ≤
∑
s

xs
w, ∀w ∈ W, b ∈ B, j ∈ J. (28)

We call the model RLMRLMRLM with relaxed y2wbj and constraint
(28) as RLM∗RLM∗RLM∗. Table III shows that model RLM∗RLM∗RLM∗ maintained
the same total variable count as model RLMRLMRLM , but the number
of binary variables decreased to 100, solely related to the
variable xs

w. With this relaxation, LINGO required just over
5.5 hours to obtain an optimal solution for model RLM∗RLM∗RLM∗.
LINGO selected three additional warehouses: one large and
two medium-sized.

As the solution in Table III provided fractional values for
the variable yℓwbj , we decided to enforce the presence of the
selected warehouses from model RLM∗RLM∗RLM∗ into model LMLMLM and
then resolve it. To do so, we updated the set B to:

B = {(1, 3), (2, 3), (4, 2), (28, 3), (33, 2)} (29)

Table IV outlines the computational outcomes. It shows that
LINGO was able to obtain an optimal solution for model LMLMLM
with constraint (29) in about two hours, with an objective
function value of 3.9309 × 106. Notice that the total number
of variables decreased from 64,564 to 64,561 as we forced the

Table III: Computational Results for Model RLM∗RLM∗RLM∗

RLM∗RLM∗RLM∗
Model Class MILP

Total Variables 64,564
Binary Variables 100

Constraints 231,386
Iterations ×106 16.730

Time (Hours: Minutes: Seconds) 05:41:25
Best Objective ×106 3.8803

Objective Bound ×106 3.8803
Selected Warehouses (1, 3), (2, 3), (4, 2)

(ID, Size) (28, 3), and (33, 2)
Status Optimal

three warehouses from model RLMRLMRLM . The objective function
in Table IV is higher than in Table III as expected, since model
RLMRLMRLM is a relaxed model allowing fractional assignments that
reduce the overall cost.

Table IV: Model LMLMLM with (29) computational results

LMLMLM with (29)
Model Class MILP

Total Variables 64,561
Binary Variables 10,841

Constraints 220,642
Iterations ×106 13.207

Time (Hours: Minutes: Seconds) 02:01:51
Best Objective ×106 3.9309

Objective Bound ×106 3.9309
Forced warehouses (1, 3), (2, 3), (4, 2)

(ID, size) (28, 3), and (33, 2)
Status Optimal

We recommend solving such models in supply chain risk
management with large data sets by first relaxing the y
variables and then forcing the selected warehouses into model
LMLMLM before resolving.

IV. CONCLUSION

Within this investigation, we have presented a cubic, binary
optimization framework to strategically determine warehouse
placements and branch allocations, incorporating the risk of
warehouse failure. Acknowledging the intricacies of the initial
model and the extensive array of variables and parameters
typical in big data contexts, we introduced linearization and
relaxation techniques to facilitate a streamlined and proficient
solution approach.

Our approach was rigorously validated through a case
study involving a real-world problem faced by a Canadian
company. This validation showcased the practical applicability
and robustness of our model and solution methodology in
addressing the intricate challenges of warehouse location and
branch assignment amid potential disruptions.

By incorporating big data considerations into our model, we
leveraged extensive datasets to gain deeper insights into supply
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chain dynamics, demand patterns, and operational risks. This
allowed us to create a more realistic and resilient framework
for supply chain network design, enhancing the reliability and
performance of the network.

The integration of big data not only improved the precision
of our optimization model but also facilitated cost reduction
and heightened customer satisfaction by enabling more in-
formed and strategic decision-making. Our study underscores
the critical role of big data in modern supply chain optimiza-
tion, providing a pathway to more robust and adaptive supply
chain networks.
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V. APPENDIX I: NOTATION

Notation Description
B, b B is the set of branch indexed by b.
W,w W is the set of warehouse location indexed by w.
S, s, q S is the set of warehouse size indexed by s.
J, j, g J is the set of product category indexed by j.
B A subset of W × S listing warehouses

of specific capacities built or to be built.
ℓ The service level of a warehouse.
xs
w A binary variable for warehouse w of capacity s.

yℓwbj A binary variable for the assignment of branch b to
warehouse w at level ℓ to satisfy its demand from product j

K A common volume unit to measure demand.
dbj The demand, in K, of product j from branch b.
fs
w The fabrication cost of warehouse w of size s.

τwbj The cost to ship one K of product j
from the warehouse w to branch b.

CF (x) The fabrication and land costs.
CO(x, y) The operation costs.
CT (y) The transportation costs.

pw, p∗, p∗ The probability that warehouse w fails
and the min and max failure probabilities.
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