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Abstract—Aerial imagery obtained through remote sensing
is extensively utilized across diverse industries, particularly for
object detection applications where it has demonstrated consid-
erable efficacy. However, clouds in these images can obstruct
evaluation and detection tasks. This study therefore involved
the compilation of a cloud dataset, which categorized images
into two classes: those containing clouds and those without.
These images were sourced from the publicly available Maxar
’Hurricane Ian’ repository, which contains images from various
natural events. We demonstrated the impact of cloud removal
during pre-processing on object detection using this dataset
and employed six CNN models, including a custom model, for
cloud detection benchmarking. These models were used to detect
objects in aerial images from two other events in the Maxar
dataset. Our results show significant improvements in precision,
recall, and F1-score for CNN models, along with optimized
training times for object detection in the CloudNet+YOLO
combination. The findings demonstrate the effectiveness of our
approach in improving object detection accuracy and efficiency in
remote sensing imagery, particularly in challenging cloud-covered
scenarios.

Index Terms—Cloud Detection, Dataset, Deep Learning, CNN,
ResNet, Vgg16, DenseNet169, EfficientNet, MobileNet

I. INTRODUCTION

As remote sensing technology continues to advance at a
rapid pace, the utilization of remote sensing imagery has
expanded significantly across a diverse range of fields. Aerial
images can benefit different sectors such as military target
identification, environmental monitoring, meteorology, mineral
exploration, and geographical mapping. In the context of
aerial imagery, clouds are significant visual obstructions that
can obscure smaller ground objects. According to a study
conducted by NASA [1], 67% of the Earth’s surface is covered
by clouds. When detecting ground objects from aerial images,
it is crucial to exclude images in which a substantial portion is
blocked by cloud cover. This helps in maintaining the quality
and validity of the data used for ground object detection
and analysis. Thus, the identification of cloud objects plays

a vital role in the pre-processing of the images for such
applications with object recognition, image recognition, 3-D
surface generation [2].

Over the years various algorithms [3]–[6] have been pro-
posed for the detection of clouds in images. These algorithms
utilize processing techniques such as analyzing the hue, high
and low concentration features, thermal infrared information,
texture, and geometry of the clouds. Additionally, various
thresholding techniques have been implemented to enhance
cloud detection accuracy. More recently, deep learning models
have shown promise in cloud detection by learning features
directly from the images. These models have the potential to
improve cloud detection accuracy and robustness through their
ability to automatically learn and adapt to complex patterns
in the data. Researchers have utilized different custom and
existing CNN models, such as Feature Pyramid Networks
(FPN), multi-scale convolutional feature fusion (MSCFF) [7],
and supervised learning techniques [8], for cloud detection in
images. These techniques leverage advanced neural network
architectures and supervised learning methods to improve
the accuracy and robustness of cloud detection from images
containing various objects.

In this paper, we introduce a new cloud image dataset com-
prising manually segregated images containing only clouds.
These images have been resized to focus solely on the cloud
formations. To create this dataset, we utilized the Maxar
dataset and specifically selected images related to the “Hurri-
cane Ian” event [9]. These images depict both pre and post-
event aerial views, with a focus on the ground-level impact of
Hurricane Ian. We applied techniques to detect and separate
the cloud-containing images from the dataset. For object detec-
tion, we employed various CNN models, including a custom
CNN designed with the smallest number of parameters. In our
results section, we evaluate the benefits of this preprocessing
step by demonstrating improved time optimization and the
enhanced performance of object detection.
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II. RELATED WORK

In this section, we will look into some of the available aerial
benchmark datasets and papers that discuss methodologies to
detect clouds in aerial images. Remote sensing images have
proven to be quite handy in different cases such as Agriculture,
Disaster Management, Urban Planning, Climate Studies, etc.
AID Dataset [10] is quite popular for its large number of
images and wide range of classes, 30 to be exact. It contains
RGB images and is proficient in exploring different scenarios.
Another popular dataset from the United States Geological
Survey National Map covers [11] which covers 20 regions
in the USA. The dataset comprises 21 categories of land-use
scenes, each with single-label annotation. There are 100 im-
ages in each category, all sized 256×256 pixels. Shallow clouds
[12] is another popular dataset that focuses on 4 different
types of cloud formation types, fish, flower, gravel, and sugar.
The images in this dataset were sourced from the National
Aeronautics and Space Administration (NASA) Worldview.
They cover three regions, spanning 21 degrees of latitude
and 14 degrees of longitude, and crowd-sourcing activity was
used for labeling them. Besides these using Google Earth
images various other RS datasets were introduced The WHU-
RS19 [13] dataset is a well-known resource in remote sensing,
commonly employed for tasks like land-use and land-cover
classification. It contains about 19 categories in total. Another
is RSSCN7 [14], which is collected from 7 scenes containing
a total of 2,400 images, with 400 images for each of the seven
land-use scene categories.

With all these RS image datasets available researchers
have tried to look more into the cloud detection techniques
over the years for better results. In the paper, [15], a novel
cloud detection method for remote sensing images using
deep learning is presented. It enhances the SLIC method for
superpixel segmentation and employs a deep CNN with two
branches to detect clouds, distinguish between thick and thin
clouds, and identify non-cloud regions. The CNN architecture
consists of 4 convolutional layers and 2 fully connected layers,
with the same structure in both branches. Experimental results
demonstrate its superior accuracy and recall, achieving a recall
of 0.97 for thick clouds and 0.84 for thin clouds, the highest
compared to existing methods and single-scale CNN models.
A novel CNN model(CDnet) has also been used by Jingyu
Yang et al. [16] in their paper for cloud detection utilizing the
capabilities of deep learning, for segmenting cloud regions
from thumbnails of Remote Sensing Images. It employs a
Feature Pyramid Module (FPM) to extract both multiscale and
global contextual information with boundary refinement. The
CDnet utilizes an encoder-decoder network architecture. Their
results outperform other models with 96.47, 91.70, 85.06 and
90.41 in terms of Overall Accuracy, mean Intersection over
Union, Kappa, and Class-wise Accuracy. In another cloud
detection paper [4], the authors propose a method that starts
by creating a significance map to highlight cloud and non-
cloud differences. They then use an optimal threshold to get
a rough cloud detection result. A robust detail map helps

eliminate non-cloud regions from cloud candidates. Finally,
guided feathering detects semitransparent cloud pixels around
cloud boundaries. Although this method has limitations with
bright non-cloud regions lacking detail, it shows good visual
and quantitative performance with time optimization. Zhiwei
Li [7] and co-authors have shared a global high-resolution
cloud detection validation dataset online. Their paper intro-
duces MSCFF, a deep-learning method for cloud detection
in remote sensing images. MSCFF uses an encoder-decoder
module to extract multi-scale features and a fusion module
to combine them. MSCFF outperforms traditional methods
and state-of-the-art deep learning models, especially in bright
surface areas. Among all methods compared, MSCFF achieved
the highest mIoU and F-score values, surpassing traditional
methods like Fmask, MFC, and PRS, as well as newer methods
like DeepLab and DCN.

III. DATASET

The dataset was generated using satellite images of Hur-
ricane Ian obtained from the Maxar dataset [9]. A total of
746 images were collected, comprising images captured before
and after the hurricane. Due to the satellite’s positioning,
some images had dark portions and significant cloud cover.
To isolate only the cloud portions, each image was divided
into 1024 square-shaped images. Subsequently, a black frame
elimination filter was applied to eliminate black frames. The
images were then provided to two annotators for annotation.
Each annotator independently annotated the images into two
classes: one class was for cloud and another class was for not
cloud, and a third annotator conducted a final examination. The
third annotator resolved any annotation errors by addressing
conflicting decisions made by the initial annotators. Each
image in the dataset has dimensions of 640 x 640 pixels.
Finally, the resultant dataset consisted of 2,476 images, with
1342 (54.2%) labeled as Cloud and 1134 (45.8%) as Not Cloud
images. The flowchart of the whole dataset creation process
is shown in Figure 1

Fig. 1. Flowchart of Dataset Creation

IV. METHODOLOGY

To assess the performance of various transfer learning
architectures, we employed five different models, namely
vgg16, densenet169, resnet18, efficientnet b0, and mo-
bilenetv3 small 075. The selection of these models was based
on their size and parameter counts, with the respective number
of parameters for each model provided in V. Our CDD dataset
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Fig. 2. Examples of CDD Dataset

was divided into three splits, and to ensure a fair benchmark,
we maintained a consistent split ratio of 80:10:10 for all
six models. To validate the performance of the dataset and
model we have also evaluated the model learning in two
different events of the Maxar dataset, we have used kalehe
DRC flooding [17] and Indonesia Earthquake and Tsunami
[18] from Maxar dataset.

A. CloudNet

To assess the efficacy of our dataset and identify clouds, we
have developed CloudNet, a lightweight convolutional neural
network (CNN). CloudNet is specifically designed for RGB
images, prioritizing efficiency and simplicity. It implements
a two-layer convolutional architecture, subsequently followed
by completely connected layers. The initial convolutional layer
processes three-channel RGB images into two by employing a
2x2 Max Pooling operation, a 3x3 kernel, and Rectified Linear
Unit (ReLU) activation. Following this, the features are refined
even further in the second convolutional layer, which converts
the two channels into four. The flattened output from the
convolutional layers is processed by the fully connected layers,
which consist of a first fully connected layer with an input size
of 4 * 56 * 56 and an output size of 8, which is activated
by ReLU. Subsequently, for binary classification, a second
fully connected layer is employed, which has an input size
of 8 and an output size of 2. The efficient and uncomplicated
architecture of CloudNet facilitates the detection of clouds in
real time and offers valuable insights into the quality of the
dataset via performance evaluation of binary classification.

V. EXPERIMENTAL ANALYSIS

A. Experimental Setup

In this experiment, we use Google Colab Pro Plus. To be
specific, we used the power of the Tesla T4 GPU for deep
learning models. Our deep learning models were constructed
using Python 3, PyTorch, and Poutyne, complemented by
PyTorch Image Models (Timm). The table I presents the
hyperparameter settings utilized for this research set for all
the models to ensure consistency.

B. Results

In our study, we evaluated our cloud dataset using six
CNN based models. Upon examining the detailed results

TABLE I
HYPERPARAMETERS FOR MODEL TRAINING

Hyperparameter Value
Image Dimension (224, 224)
Number of Epochs 25
Batch Size 32
Learning Rate 1e-3
Mean (0.485, 0.456, 0.406)
Standard Deviation (STD) (0.229, 0.224, 0.225)

TABLE II
VOLUME OF IMAGE AND TIME COMPARISON ON TWO EVENTS

Volume(A1) Time(A1) Volume(A2) Time(A2)
Event-1 16384 711.41 5355 444.89
Event-2 38912 1685.24 8917 801.31

Note: A1 and A2 refer to volume and time without pre-processing and after
pre-processing is done. Here, time is measured in seconds and Event-1 and
2 refer to Kalehe DRC flooding and Indonesia Earthquake and Tsunami
event from the Maxar dataset.

of the pre-trained models in table III after 25 epochs of
training, we observed that MobileNetV3 achieved the highest
accuracy among the models. It demonstrated a training loss
of 0.0033 and an impressive test accuracy of 98.38% on the
test dataset. ResNet18 also demonstrated strong performance
in both the validation set and training accuracy. Overall, all
models performed well, exhibiting similar ranges of training
accuracy between 98-99% and loss, with the exception of
VGG16. Despite having the highest number of parameters,
VGG16 performed poorly in detecting cloud and non-cloud
images, achieving a training accuracy of 47%. It is noteworthy
that despite having significantly fewer parameters than the
other models, our custom CNN model, CloudNet, stood out.
With only 100,510 parameters which is 10 time smaller
compared to MobileNet’s 1,018,922 parameters, CloudNet
achieved outstanding results, boasting a training accuracy of
99% and a minimal training loss of 0.017. Furthermore, its test
accuracy of 97.58% was competitive with that of the other
models. In our evaluation of model performance for cloud
and non-cloud images using Precision, Recall, and F1-score
(as shown in table IV), MobileNetv3 achieved the highest F1-
score of 99% with good precision and recall of 99% and 98%
for the cloud class. In contrast, VGG16’s complex network and
higher number of parameters resulted in poorer performance
across all metrics, yielding an F1-score of 72% on our smaller
dataset. Additionally, recall for cloud classes was notably high
across all models, with four achieving 100%. Our CloudNet
model performed well in the cloud class, with a recall of 99%
and an F1-score of 98%, despite having fewer parameters. For
non-cloud classes, the F1-score remained stable at 97%.

Our cloud dataset helped optimize processing time, as
shown in table II, where the time taken for training the dataset
with CloudNet and YOLO is shown on two different datasets.
Post-pre-processing, the training duration was nearly halved
compared to the initial time, highlighting the dataset’s impact
on optimization.
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TABLE III
MODEL PERFORMANCE METRICS

Model Name Train Acc. Train Loss Validation Acc. Validation Loss Test Acc. Test Loss
resnet18 99.54 0.010 99.193 0.0612 98.38 0.063
mobilenetv3 small 075 99.898 0.0033 98.790 0.0350 98.38 0.075
densenet169 99.191 0.037 99.19 0.040 98.79 0.03
efficientnet b0 98.93 0.030 98.38 0.120 97.98 0.16
vgg16 47.272 0.694 48.387 0.697 55.64 0.693
CloudNet 99.29 0.017 98.387 0.060 97.580 0.080

TABLE IV
MODEL EVALUATION METRICS FOR CLOUD AND NOT CLOUD CLASSES

Model Name Cloud Not Cloud
Precision Recall F1-Score Precision Recall F1-Score

resnet18 0.97 1.0 0.99 1.00 0.96 0.98
mobilenetv3 small 075 0.99 0.98 0.99 0.97 0.99 0.98
densenet169 0.98 1.0 0.99 1.00 0.97 0.99
efficientnet b0 0.97 1.0 0.98 1.0 0.95 0.98
vgg16 0.56 1.0 0.72 0.0 0.0 0.0
CloudNet 0.96 0.99 0.98 0.99 0.95 0.97

TABLE V
NUMBER OF PARAMETERS IN DIFFERENT MODELS

Model Number of Parameters
vgg16 134,268,738

densenet169 12,487,810
resnet18 11,177,538

efficientnet b0 4,010,110
mobilenetv3 small 075 1,018,922

CloudNet 100,510

VI. CONCLUSION AND FUTURE WORK

In conclusion, we have presented a dataset of 2476 cloud
and non-cloud images which can be used to detect the pattern
of the clouds in aerial images. This detection can be necessary
during the pre-processing phase for different aerial image
tasks. In our work, we have demonstrated how after pre-
processing different CNN models perform for object detection
from aerial images. We have also observed that the overall time
has been optimized by removing cloud images during the pre-
processing stage. In the future, the dataset can be improved
by increasing the number of images and adding domain-
specific features related to cloud formation, movement, or
other meteorological factors.
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