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Abstract—The efficient operation of photovoltaic (PV) plants
requires continuous monitoring to identify and correct anomalies
that may affect the performance and lifespan of the equipment.
However, some challenges include defining which data can be
collected and useful from the installation to identify anomalies,
as well as which models can be applied. Therefore, this paper
proposes an approach for anomaly detection in PV generation
using dynamic threshold techniques based on descriptive statis-
tics. The methodology involves monthly analysis of AC power
characteristic curves and irradiance normalization, applying in-
terquartile ranges and standard deviations to identify anomalies.
AC power was chosen as it is the inverter output and, therefore,
more easily obtained data. The methodology’s implementation
is validated using real PV inverter data to identify anomalous
behaviors. Additionally, the data used are generally available in
PV plants without the need for additional sensors. Therefore, this
approach provides an effective tool for predictive maintenance
and optimization of PV systems.

Index Terms—Anomaly Detection, Photovoltaic Systems, Mon-
itoring, Dynamic Thresholds, Descriptive Statistics.

I. INTRODUCTION

The solar energy market has been showing growth. Ac-
cording to the 2023 report by the International Renewable
Energy Agency (IRENA), the global installed capacity of
solar photovoltaic (PV) energy exceeded 710 GW, reflecting
an annual growth of about 22 % [1]. With the significant
increase in installed solar energy capacity worldwide, the
need for continuous monitoring becomes greater to ensure the
reliability and performance of PV systems [2]-[4].

A monitoring framework aims to identify anomalies that can
result in significant energy losses and additional maintenance
costs [3], [5]. Many of the variables that can be monitored
pertain to electrical quantities inherent to the system and data
related to external factors, such as temperature and irradiance.

For grid-connected PV systems, electrical quantities are
associated with the performance of various components aimed
at converting sunlight into usable electricity and integrating
it into the grid. The main components include PV modules,
which capture solar energy and convert it into DC voltage
and current, and inverters, which transform this DC voltage
and current into alternating current (AC) compatible with the
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grid [2], [6], [7]. Power is related to voltage and current, and
the converted electrical energy is the power accumulated over
time. An example schematic is shown in Figure 1.
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Fig. 1. Schematic of PV system connected to conventional grid [8].

In addition to electrical quantities, external factors such as
ambient temperature, solar irradiance, and weather conditions
also affect the performance of PV systems. Irradiance, for
instance, is a measure of the power of the sun received per unit
area and is crucial for calculating the amount of energy that PV
modules can generate [9]. Ambient temperature also affects
the efficiency of PV modules, as high temperatures can reduce
the efficiency of converting solar energy into electricity [10].
Other climatic factors, such as the presence of clouds, rain,
and dust, can influence the amount of sunlight reaching the
modules, directly impacting energy generation [11]. Therefore,
the collection and analysis of these external data can aid
in identifying performance deviations and detecting system
anomalies. Early fault detection is a key component for the
efficient operation of PV plants [12]-[14].

Various approaches have been proposed for anomaly detec-
tion in PV systems, including machine learning-based methods
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and statistical techniques [15]. Some studies using machine
learning algorithms, although effective, can be computationally
intensive and depend on large volumes of labeled data, which
may limit their applicability in scenarios with limited data or
restricted computational resources [16]-[18].

On the other hand, methods based on descriptive statistics
offer a simpler and more efficient solution for anomaly de-
tection. Techniques such as regression analysis, interquartile
range (IQR), and statistical control charts have been effective
in detecting faults in PV systems by analyzing performance
and identifying significant deviations from expected behavior.
These methods are less dependent on large volumes of data
and can be implemented with lower computational complexity
[15], [19]-[21].

In this context, this article proposes an anomaly detection
approach for PV generation using dynamic threshold tech-
niques based on descriptive statistics. The presented methodol-
ogy involves the monthly analysis of AC power characteristic
curves and irradiance normalization, applying interquartile
range and standard deviation limits to identify anomalies.

The implementation of the proposed methodology is eval-
vated using real data from inverters at a PV plant at the
University of Campinas (UNICAMP) to identify anomalous
behaviors, demonstrating that this approach provides a tool
for predictive maintenance and optimization of PV systems.

II. SURVEY OF RELATED LITERATURE

In the literature, there are studies that seek to use statistical
methods for the monitoring and detection of anomalies in
PV systems. Among the methods, the use of hypothesis tests
[22], descriptive statistics [20], [21], and multivariate statis-
tical methods [17], [23], [24] are some examples, sometimes
associated with other methods.

In [22], a methodology based on hypothesis testing is
proposed to identify faults in PV systems. The approach
involves collecting performance data, such as current and
voltage, followed by defining null and alternative hypotheses.
Test statistics are calculated and, based on the p-value and
significance level, it is decided whether there is a fault in the
system. This approach depends on accurate reference models,
and noisy or incomplete data can lead to false detections.

In [20], the authors propose a method for detecting anoma-
lies in solar power generation systems that involves normal-
izing the amount of electricity generated, allowing for the
comparison of data between different systems and weather
conditions. The method uses the mean and standard deviation
of normalized generations to identify points outside the ex-
pected pattern, characterizing possible faults or anomalies. In
the experiment, the number of panels per string was limited
to four. Therefore, the effectiveness of the method was not
applied when the number of panels in a sequence increased
significantly.

In [21], linear regression analysis is applied to the Per-
formance Ratio (PR) metric to estimate gradual degradation
and performance reduction trends over time. For anomaly
detection, statistical control charts, such as the Exponentially

Weighted Moving Average (EWMA), are employed to monitor
and identify sudden or anomalous changes in the system.

In [23], the method utilizes techniques like Principal Com-
ponent Analysis (PCA) and Independent Component Analysis
(ICA) to identify anomalous patterns and deviations in plant
performance. This approach enables the early identification
of operational problems, improving system efficiency and
reliability. The authors also highlight that the implementation
of these techniques can be complex, and the accuracy of the
results can be affected by the quality and quantity of the
available data, which may limit the effectiveness of monitoring
under real-world conditions.

In [17], PCA is combined with genetic algorithms (GA) and
artificial neural networks (ANN) to detect and diagnose faults
in grid-connected PV systems. PCA is used to reduce data
dimensionality while preserving the most relevant features,
and GA selects the most important features. The ANN then
classifies and diagnoses the faults. Despite the method’s effec-
tiveness, it has some limitations. The combination of GA and
ANN can be computationally intensive, especially for large-
scale systems. Moreover, the accuracy of the diagnosis heavily
depends on the quality and quantity of available historical data.
Another limitation is the model’s generalization capability,
which may not be effective under operational conditions not
represented in the training data.

In [24], electrical and environmental variables are integrated
to identify anomalies. Techniques such as PCA are used to
reduce data dimensionality, and multivariate statistical models
are applied to detect significant deviations from the system’s
normal behavior. Some limitations addressed include the ne-
cessity for high-quality and large-scale data to train the mod-
els, which can be challenging in some scenarios. Additionally,
the approach can be sensitive to unmodeled variability in
environmental conditions, leading to false detections. Another
limitation is the computational complexity associated with
processing large volumes of data and applying multivariate
techniques such as PCA.

III. CASE STUDY

The research used one of the installations from the Sus-
tainable Campus project at the University of Campinas (UNI-
CAMP) located in the city of Campinas, Sdo Paulo (Brazil)
as a case study. The PV plant, as shown in Fig. 2, is situated
at the UNICAMP gymnasium, with a total capacity of 336.96
kWp and an estimated annual generation of 481.16 kWh [25].

AC Power and Irradiance data were collected over a total
period of one year, recording measurements at 15-minute
intervals. The decision was made to use the inverter’s output
power data as they are derived from the voltage and current
relationships converted by the PV modules.

These data allow us to identify issues throughout the entire
energy generation chain, including problems in the modules,
the electrical grid, or the inverters themselves. The simplified
schematic of the plant’s operation with the DC-AC power
component was presented in Fig. 1.
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Fig. 2. PV plant installed at UNICAMP [26].

IV. METHODOLOGY

This study proposes a methodology to identify anomalies
in the active power (F,.) measurements of PV inverters using
dynamic thresholds based on descriptive statistical methods
and solar irradiance data.

A. Anomaly Detection Criteria

To identify anomalies in PV plants or systems, (i) monthly
characteristic curves of AC power with dynamic thresholds
were created, (ii) daily solar irradiance data were used, and (iii)
the combination of both was also utilized. Using characteristic
curves and irradiance data, anomaly detection focused on
potential problems such as interruptions, failures or slowdowns
associated with or absorbed by the inverter.

Creating monthly characteristic curves of active power
(P,.) with dynamic thresholds can contribute to identifying
and monitoring the performance variations of PV inverters
over time. By calculating monthly descriptive statistics, we
can establish upper and lower limits that adapt to seasonal
and daily variations in energy generation. Exceeding these
dynamic limits allows for more precise anomaly detection,
distinguishing between normal fluctuations and potentially
problematic behaviors that may indicate system failures or
inefficiencies.

Daily irradiance, which represents the total power of energy
from the Sun per unit area, was compared with the inverter’s
output power (or P,.). To facilitate the comparison between
irradiance (POA) and P,., the POA data were normalized.
Normalization allows for the identification of anomalies where

active power decreases while irradiance increases, indicating
possible system failures.

B. Monthly Characteristic Curve of AC Power

The monthly characteristic curves were defined by limits
based on the active power (FP,.) values grouped monthly (m)
and hourly (4). Two types of limits are calculated: Upper Limit
(Urgr,,,) and Lower Limit (Ls7p,,,)-

The Urgr,,, is calculated using the third quartile (Q3) and
the interquartile range (IQR). The goal is to capture values
that are above the typical variation range. The formula for the
calculation is represented by Eq.1.

Uigr,,, = min(Q3mpn + a X IQRypn, maZy,y) (1)

The upper limit is adjusted by «. The value of « can
vary depending on the context and the desired sensitivity for
anomaly detection. In this work, an empirical value of 1.5 was
used based on the interquartile method. To avoid unrealistic
values, the upper limit was also constrained not to exceed the
maximum power (Mmaxmp).

MaTp, = maz(Pye,) 2)

The IQR can be found by the difference between the third
quartile (Q3) and the first quartile (Q7) according to Eq.3.

IQRmh = ngh - leh (3)

The Lsrp,,, is based on the mean (1) and the standard
deviation (o) of the P,. measurements. Using the mean and
standard deviation helps to avoid extrapolating to negative
P, values, which are physically impossible and occur more
frequently when using IQR. For these cases, which can happen
at the beginning and the end of the curve due to being
associated with the start and end of energy generation from the
panels following sunrise and sunset, the values were adjusted
to zero. The formula for the calculation is represented by the
Eq4.

Lstp,,, = maz(tmn — & X opmp,0) “4)
With i and o calculated according to Eq.5 and Eq.6.

n

1
Hmh = E Z(Paci) (5)
=1
1 « )
Omh = ﬁ Z(Paci - ,Ufmh) 6)
1=1

C. Normalization of Irradiance Compared to Inverter Output
Power

The irradiance (PO A) data have the same distribution curve
when compared to the P,. curve under conditions of intense
sunlight during the day. The difference lies in the scale of the
values. For the region where the PV plant is located, POA
ranges from 0 to 1000, while P,. can range from O to over
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55k. Normalizing the data facilitates the visual comparison of
the curves.

The normalization of POA data (POA, ) is used to
scale the POA values to the same range as P,. as per the
Eq.7.

POA — POAnin
APOA

POA,, . — ( ) X APac + Poe (7)

Where APOA and AP,, are calculated as per Eq.8 and
Eq.9.

APOA = POAyap — POAnn ®)
APye = Pacpros — Paconin (€

D. Summary of applied methodology

The logic for anomaly detection was based on two main
criteria:

o Active Power outside the limits of the monthly character-
istic curve: If the active power (F,.) measured at a given
moment was above the Upper limit (U;qg,,,) or below
the Lower limit (Ls7p,,,)-

o Drop in Active Power with an increase in Irradiance: An
anomaly is also recorded if, in two consecutive moments,
the active power (P,.) decreases while the irradiance
(POA) increases.

‘mh

Both cases can also occur together at a given time of day.
Thus, the anomaly detection focused on problems inherent
to the equipment and not on anomalies caused by climatic
variations.

V. ANOMALY DETECTION IN PV PLANTS

This section discusses the results of the case study. As
reported in section IV, (i) the irradiance values were nor-
malized to be compared with the power and to evaluate
discrepancies between power and irradiance data that are
directly proportional, and (ii) it can be observed the monthly
characteristic curves of the inverter output power were created.

A. Normalization of Irradiance data

Under perfect weather conditions (sunny with no clouds)
and without issues in the plant’s equipment or the electrical
grid, the inverter’s output power and irradiance resemble a
Gaussian curve. Fig. 3 shows the mentioned behavior and the
climatic oscillations resulting in the variation of power for the
19th and 20th of May 2020. The characteristic curve for the
month of May was added to Fig. 3
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Fig. 3. Normalization of Irradiance data compared to AC Power.

B. Monthly Characteristic Curves of Power (P,.)

The Fig 4 below shows the monthly characteristic curves of
active power (P,.) for a one-year period. Each graph presents
the mean, median, and the upper and lower limits based on
the IQR and standard deviation.

Seasonal variability of the curves is noted, with higher P,
values observed in the summer months and lower values in
the winter months. Fig 4 includes information on minimum,
mean, median, upper/lower limit calculated by /QOR and lower
limit calculated by standard deviation (STD) for P,.

It is observed that the mean and median values are approx-
imately equal at the beginning and end of the day, indicating
that, for this time period, most values are concentrated around
the center, and the outliers are few and similarly distributed
on both sides of the median.

In general, it is noted that the asymmetrical distribution
increases closer to the peak of P,, where the median is
always higher than the mean. This behavior suggests a left
skew (skewed left), where there are some very low P, values
pulling the mean down.

For the lower limit values by IQR, large oscillations are
noted throughout the day, unlike when using the lower limit
calculated using the standard deviation (Lstp), which becomes
more similar to a normal distribution curve and can be used
more generically.

C. Anomaly detection

The detected anomalies were identified in three ways: (I)
anomalies captured by a drop in P, when there is an increase
in POA, (II) anomalies captured when P, exceeds the upper
or lower threshold of the characteristic curve, and (III) both
methods captured the same anomaly, as shown in Fig. 5 which
illustrates anomaly detection for the period from 02/05/2020
to 02/11/2020.



2024 Fifth International Conference on Intelligent

January

Data Science Technologies and Applications (IDSTA)

February March

50000

40000

30000

Pac(W)

20000

10000

50000

40000

30000

Pac(W)

20000

10000

50000

40000

30000

Pac(w)

20000

10000

November December

50000

40000

30000

Pac(W)

20000

10000

0

012345678 910111213141516171819202122230 1 2 3 4 5 6 7 8 910111213141516171819202122230 1 2 3 4 5 6 7 8 9 1011121314151617 18192021 2223

Time of day

— Average Pac(W)
Median Pac(W)

—— Maximum Pac(W)
Minimum Pac(W)

Time of day

Time of day

Lower Limit (IQR)
- Upper Limit (IQR)

Lower Limit (STD)

Fig. 4. Monthly Characteristic Curves of AC Power.

In Fig 5 we can observe that the variations in irradiance
are likely a consequence of weather conditions (cloudy, rainy,
etc.). On 11/02/2020, we can see that despite high irradiance,
the AC power values are low, indicating issues with the inverter
or the grid. For the period from 02/05/2020 to 02/11/2020, the
number of identified anomalies is presented in Table I.

TABLE I
COMPARISON OF THE NUMBER OF ANOMALIES IDENTIFIED BY METHOD

Anomaly type Anomaly count

(D) Pac(W) drop while POA increasing 32
(IT) Pac(W) out of bounds 16
(IIT) Both 5
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Fig. 5. P, and POA with Anomaly Detection (2020/2/5 - 2020/2/11).

TABLE 11
NUMBER AND PERCENTAGE OF ANOMALIES DETECTED PER MONTH AND
PER METHOD COMPARED TO THE TOTAL MEASUREMENTS (TOTAL DATA)

Anomaly count

Moth I o oI Total Data
January 205 (12.0%) 79 (4.6%) 18 (1.1%) 1702
February 189 (12.2%) 70 (4.5%) 24 (1.5%) 1543
March 183 (11.5%) 100 (6.3%) 29 (1.8%) 1584
April 138 (09.4%) 89 (6.1%) 31 (2.1%) 1465
May 115 (07.9%) 103 (7.1%) 36 (2.5%) 1447
June 188 (13.9%) 78 (5.8%) 28 (2.1%) 1356
July 151 (10.6%) 63 (4.4%) 17 (1.2%) 1424
August 134 (08.9%) 115 (7.7%) 40 (2.7%) 1489
September 153 (10.2%) 95 (6.3%) 41 2.7%) 1500
October 228 (14.0%) 94 (5.8%) 36 (2.2%) 1628
November 195 (11.8%) 87 (5.3%) 45 (2.7%) 1653
December 250 (14.5%) 76 (4.4%) 37 (2.1%) 1727

Considering the entire year of 2020, Table II shows the
anomalies detected by month considering I) P,. drop while
POA increasing, II) P,. out of bounds, and IIT) Both. It is
noted that when considering only the increasing irradiance
data with a drop in AC power (Case I), December has the
highest number of anomalies both quantitatively and as a
percentage of the total measurements taken. When consid-
ering only the characteristic curve (Case II) created, August
has the highest number and percentage of anomalies. When
considering the anomalies detected by both methods together
(Case III), November is the month with the highest number of
detected anomalies. Percentually, for this last case, November,
September, and August have the same number of detected
anomalies.

Overall, it is observed that the monthly characteristic curve
can represent the behavior of AC power without considering

small oscillations that may occur, making it a more conserva-
tive method.

VI. CONCLUSION

Anomaly detection in generated power P,.(W) over time
can be a practical and efficient first step for minimal monitor-
ing of PV plants. Given that power is a direct result of voltages
and currents, monitoring these powers can be sufficient for
systems that do not require extremely detailed monitoring.

This approach allows for the rapid identification of potential
problems, serving as a basis for a more detailed analysis
of other operational parameters. If applied consistently, it is
possible to minimize interruptions, achieve greater longevity
of PV systems, and maximize energy production by early
capturing situations such as module degradation over time.

The inclusion of climatic data such as irradiance can provide
greater accuracy and contribute to the detection of behaviors
that may arise in the inverters that can occur more discreetly
but reduce AC power generation and, consequently, the energy
generated. However, there is a caution regarding the data
recording process in PV plants, as techniques like moving
averages can interfere with and cause errors in anomaly
detection. Therefore, for future implementations, it is also
advisable to use systems with a time step smaller than 15
minutes.

As future work, we intend to establish new criteria for
defining anomalies based on the range of techniques presented;
utilize datasets with a 1-minute time step; and, test new sensors
and their correlation with PV power, such as adding humidity,
temperature, and wind direction sensors.
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