
Robotic Hand-Eye Coordination Fusion
Akshar Patel

Department of Computer Science, City College of New York, New York, NY, USA
patel.akshar111@gmail.com

Abstract—Hand-eye coordination is crucial for performing
tasks like reaching for objects in both humans and robots.
This paper investigates two methods—visual servoing and deep
reinforcement learning (RL)—to achieve hand-eye coordination
in robotic systems. Visual servoing typically leverages video
tracking and online Jacobian learning to control the robot based
on camera-robot geometry, while RL uses neural networks to
learn a global visuomotor policy. I conducted experiments using
the WAMVisualReach environment to compare these methods in
terms of sample complexity and task performance. Despite the
reliance on simulation, my findings suggest promising avenues
for real-world applications, particularly when combining both
methods to enhance sample efficiency and robustness. Future
work will focus on validating these methods on physical robots
and exploring their performance in more complex tasks like pick-
and-place.

I. INTRODUCTION

Hand-eye coordination in robotics is a well-researched
field with applications spanning from industrial automation to
autonomous systems. Tasks like reaching for objects involve
a complex interplay between perception, control, and task
specification. Visual servoing is one method that bypasses the
need for explicit modeling of the visuomotor function, instead
using video tracking and Jacobian learning. On the other hand,
reinforcement learning (RL) offers a more general approach
by learning an end-to-end policy that maps visual inputs to
actions.

Visual servoing is one method used to perform these tasks
without explicit modeling of the visuomotor function and the
use of absolute world coordinate systems. Typically, in visual
servoing, the robot uses visual video tracking to perform
perception, and online Jacobian learning is used to learn
how to control the robot, with tasks specified by visual
selection. [1] Generally, visual servoing methods have low
sample complexity, as the Jacobian can be initialized with a
central difference method. However, the Jacobian is a locally
linear approximation of the visuomotor function, so while is
very accurate locally, but not necessarily optimal for the task
globally.

In contrast, deep reinforcement learning (RL) has also been
used to learn hand-eye coordination tasks in robotics. [2] Neu-
ral networks are used to approximate an end-to-end policy that
maps visual observations to actions. Usually, convolutional
neural networks are used to extract features from the visual
observations, while fully connected neural networks are used
to map the features to actions. RL methods require more
samples from the environment to learn compared to visual
servoing methods, but they are more general in that the reward

function is sufficient for task specification and can learn a close
to optimal global motor policy for the task.

Visual servoing and reinforcement learning are two different
methods that can be used to perform hand-eye coordination
tasks. In this paper, I focus on visual servoing and reinforce-
ment learning in the context of learning camera-robot geome-
try for robotic control. I use tracked points for perception and
specify the task using the same error vector for both methods.
I report quantitative performance data comparing the different
methods in terms of sample complexity and final performance
in a simulated reaching task. Moreover, I study how the two
methods can be combined to get the best of both methods.

In Section II, I provide background information on visual
servoing and reinforcement learning. In Section IV, I discuss
similar works in the literature. In Section V, I describe the
methods I explore in my experiments. In Section VI, we
describe experimental setup and share my results. In Section
VIII, I conclude my work and discuss future work. This
paper compares visual servoing and RL in the context of
learning camera-robot geometry for robotic control. I evaluate
the sample efficiency and performance of each method in a
simulated reaching task using a 3/4/7-DOF Barrett Whole Arm
Manipulator (WAM) robot arm. Additionally, I explore how
combining these methods can yield superior results. While the
experiments are conducted in a simulated environment, the in-
sights gained could inform future real-world implementations.

II. BACKGROUND

A. Visual Servoing

Visual servoing is a robot control technique using vision.
There are two main types of visual servoing. In calibrated
visual servoing, the camera calibration parameters are known.
[3] On the other hand, uncalibrated visual servoing relies only
on image features to control the robot, reducing calibration
effort and is more general and independent of the specific
experimental setup. Previous experiments have shown visual
servoing to be an effective method for hand-eye coordination
tasks. [4] I focus on uncalibrated visual servoing with two
fixed cameras. In uncalibrated visual servoing, I seek to
minimize the point-to-point error vector f(q) is a non-linear
function of the joint angles q.

f(q) =

ug1 − ue1

vg1 − ve1
ug2 − ue2

vg2 − ve2

 (1)

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

979-8-3503-5475-1/24/$31.00 ©2024 IEEE

Where q ∈ Rd is the d-DOF robot’s joint angles,
(ue1 , ve1), (ue2 , ve2) are the image features of the end effector
from the first and second cameras, and (ug1 , vg1), (ug2 , vg2)
are the image features of the goal from the first and second
cameras.

Given the Jacobian J, I can use Newton’s method to solve
for the ∆q that minimizes a linear approximation of the error
function.

Jf (q)∆q = −f(q) (2)

The update to the joint angles ∆q is given by

∆q = −Jf (q)
+f(q) (3)

Where A+ is the Moore-Penrose pseudoinverse of A. The
the robot controller is then given the update to the joint angles
∆q, and the joint angles are updated using the following
equation.

qt+1 = qt +∆qt (4)

The Jacobian Jf (q) is initialized with the central difference
approximation. I estimate each column independently, by
perturbing one joint and keeping the other joints fixed.

Jf (q)i =
f(q+ ϵei)− f(q− ϵei)

2ϵ
(5)

Where Jf (q)i is i-th column of the Jacobian, the ei is the i-
th standard unit vector, using a small perturbation ϵ, in mycase,
0.1 radians.

The Jacobian Jf (q) approximation can be updated online
using Broyden’s method.

Jf (q)t+1 = Jf (q)t +
f(q)t − Jf (q)t∆qt

∆q⊤
t ∆qt

∆q⊤
t (6)

B. Reinforcement Learning

Interestingly, support gains from experimentation associated
with the climate. RL acts in a Markov Choice Cycle character-
ized by the tuple (S,A,P,R, γ) where S is the state space, A
is the activity space, P is the progress likelihood capability, R
is the prize capability, and γ ∈ [0, 1] is the markdown factor.
The climate makes in a move and returns the following state
and prize as indicated by the progress likelihood capability
and award capability separately.

The target of the robot specialist is to gain proficiency with
a strategy π(st) = at that guides states from the climate to
activities which amplify the normal return R = E[

∑T
t=0 γ

trt]
where rt is the award at time t, and T is the time skyline.
Frequently, profound brain networks are utilized to address
the approach. The approach is to get the hang of utilizing
slope plummet strategies to boost the normal return.

III. LITERATURE REVIEW
The field of robotic control has seen extensive research,

particularly in the domains of visual servoing and reinforce-
ment learning, each contributing significantly to advancements
in robotic precision and autonomy. Visual servoing has been
a cornerstone of robotic control, providing a framework for
real-time, feedback-based motion control by aligning the
robot’s movements with visual inputs. Seminal works such
as Chaumette and Hutchinson have thoroughly documented
the theoretical foundations and practical implementations of
visual servoing in robotic systems, establishing it as an ef-
fective method for tasks requiring high precision [5]. Recent
studies have further enhanced visual servoing by reducing
the dependency on camera calibration, thereby increasing its
applicability in unstructured and dynamic environments [6].

On the other hand, reinforcement learning (RL) has rapidly
evolved with the advent of deep learning techniques, enabling
robots to learn complex behaviors through trial and error. The
application of RL in robotics has been particularly transfor-
mative, as seen in the works of Mnih, who pioneered deep
Q-networks (DQNs) for learning control policies directly from
high-dimensional sensory inputs [7]. This approach has set the
stage for RL to tackle more complex tasks that were previously
challenging for traditional control methods. Levine extended
this work by integrating deep visuomotor policies, showcasing
the potential of RL in real-world robotic tasks such as ma-
nipulation and grasping [8]. However, the sample inefficiency
of RL remains a significant challenge, especially in scenarios
where data collection is costly and time-consuming.

Despite these advancements, a critical gap exists in the
integration of visual servoing and reinforcement learning.
Although both methods have been extensively studied in isola-
tion, their combined application has received limited attention.
Few studies have explored how the robustness and sample
efficiency of visual servoing can be leveraged to enhance the
performance of RL in robotic tasks. Similarly, research by
Zhu explored the concept of Residual Reinforcement Learning
(RRL), where a pre-trained visual servoing controller is fine-
tuned using RL to adapt to new tasks, demonstrating potential
improvements in learning efficiency and task generalization
[9].

This paper seeks to fill this gap by providing a compre-
hensive analysis of combined approaches, such as Residual
Reinforcement Learning (RRL) and Jump Start Reinforcement
Learning (JSRL), and evaluating their applicability to real-
world robotic tasks. My study contributes to the growing
body of literature on hybrid robotic control strategies, offering
insights into the trade-offs between sample efficiency, robust-
ness, and computational complexity in these methods.

IV. RELATED WORKS
In Model-based and without model support learning for

visual servoing Farahmand et al., analyzes the presentation
of model-based/sans model RL given the Regularized Fitted
Q-Cycle calculation, and uncalibrated visual servoing utilizing
just the initial 3 DOF of the robot with discrete activities. [10]

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

In our work, I analyze the presentation of uncalibrated visual
servoing and support picking up utilizing 3, 4, and 7 DOF
robots with nonstop activities.

In End-to-End Preparing of Profound Visuomotor Policies,
Levine et al. examine start to finish preparing profound vi-
suomotor strategies, which utilize a brain organization design
with a spatial softmax, and trains with a directed strategy
search, which joins managed to learn with a direction-driven
RL calculation that gives oversight on the arrangement. [2]
They assessed their method on a scope of certifiable control
undertakings.

In Asynchronous Support Learning for Ongoing Control of
Physical Robots, Yuan and Mahmood show a framework that
figures out how to reach visual focuses from pixels in no less
than 2 hours of involvement utilizing a genuine 5 DOF robot.
[11] The paper’s emphasis is on assessing successive and
offbeat learning, yet fills in as a genuine instance of creating
reasonable RL frameworks for certifiable visual automated
control.

V. METHODOLOGY

A. Representation

For uncalibrated visual servoing, the Jacobian matrix is
crucial for relating the visual error to the robot’s control com-
mands. To improve the robustness of the Jacobian estimation, I
use Broyden’s method for online updates. However, consider-
ing real-world scenarios where sensor noise and environmental
variability affect measurements, Iintegrate a robust filtering
technique to handle outliers and noise in the visual data.

Calibration errors, lighting variations, and occlusions are
common in real-world applications. To mitigate these, Iemploy
adaptive filtering techniques and dynamic adjustment of the
error vector based on real-time feedback from the robot’s
sensors.

1) Neural Networks: I explore various architectures for
neural networks, including the number of layers and neurons
per layer, to determine the most effective configuration for
learning visuomotor policies. I also investigate advanced tech-
niques such as dropout and batch normalization to improve
generalization and stability of the learned policies.

In my case, I use fully connected neural networks parame-
terized by θ to approximate the end-to-end policy. I compare
the performance of different neural network architectures,
including the number of layers and the number of neurons per
layer. I use the rectified linear unit, ReLU, activation function
for hidden layers, and tanh for the output layer. I use the
Adam optimizer with a learning rate of 0.001.

For example, a 2-layer neural network with l neurons per
layer is given by

πθ(s) = tanh(W2ReLU(W1s+ b1) + b2) (7)

Where W2 ∈ Rd×l, W1 ∈ Rl×d, b2 ∈ Rd, b1 ∈ Rl, and θ =
{W1,W2,b1,b2} are the learned parameters of the neural
network.

2) Neural Jacobian: Inspired by the Neural Jacobian ap-
proach from [12], rather than learning a fully connected neural
network, I can use a neural network to approximate a Jacobian
to model the visuomotor function. However, in contrast to
the supervised learning treatment taken by Przystupa et al.,
I use reinforcement learning to learn the Neural Jacobian,
which to my knowledge is a novel policy representation in
reinforcement learning.

For example, a 2-layer neural network with l neurons per
layer that outputs a neural Jacobian is given by

Jθ(s) = W2ReLU(W1s+ b1) + b2 (8)

Where W2 ∈ Rd·n×l, W1 ∈ Rl×d, b2 ∈ Rd·n, b1 ∈ Rl,
and θ = {W1,W2,b1,b2} are the learned parameters of the
Neural Jacobian.

Similar to uncalibrated visual servoing, the Neural Jacobian
is then used to compute the action update using the following
equation

πθ(s) = tanh(J+
θ (s)f(q)) (9)

The Neural Jacobian approach is used to model the visuomotor
function, where a neural network approximates the Jacobian
matrix. Icompare this approach with traditional Jacobian meth-
ods to evaluate its effectiveness in capturing complex, non-
linear relationships in real-world environments.

3) Model Evaluation and Tuning: I perform extensive
hyperparameter tuning for both neural network architectures
and reinforcement learning algorithms. Techniques such as
grid search and random search are used to find the optimal
parameters, with cross-validation to ensure the models perform
well across different conditions.

B. Methods

There are several methods that I use to learn the visuo-
motor function. In uncalibrated visual servoing, I use central
differences to initially approximate the Jacobian. We can also
use Broyden’s method to update the Jacobian online. In my
experiments, I use a constant Jacobian, as I found that the
online updates did not noticeably improve performance.

1) Twin Delayed DDPG (TD3): There are numerous rein-
forcement learning algorithms. When compared to Soft Actor-
Critic (SAC) and Proximal Policy Optimization (PPO), I found
TD3 to be the most sample-efficient and stable algorithm for
my task, I use TD3 in the following experiments. TD3 is
an off-policy algorithm, it learns a Q-function in addition to
the policy which is used to improve sample efficiency. TD3
is a variant of Deep Deterministic Policy Gradient (DDPG)
that uses clipped double-Q learning, delayed policy updates,
and target policy smoothing, which improves stability and
performance. [13] I use RL algorithm implementations from
stable-baselines3 [14]. I use the default hyperparam-
eters for TD3.

2) Reward Function: In reinforcement learning, the choice
of the reward function is important. I compare the performance
of several reward functions. I compare the sparse, timestep,
and dense reward functions.

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

The sparse reward function is the simplest, it returns a
reward of 1 if the end effector is within a threshold distance
ϵ of the goal position, and 0 otherwise.

rsparse(q) =

{
1 if ∥f(q)∥2 < ϵ

0 otherwise
(10)

The timestep reward function is used to encourage the agent
to complete the task as quickly as possible. It returns a reward
of 0 if the end effector is within a threshold distance ϵ of the
goal position, and -1 otherwise.

rtimestep(q) =

{
0 if ∥f(q)∥2 < ϵ

−1 otherwise
(11)

The dense reward function gives more shaped feedback to
the agent, it returns the negative of the Euclidean distance
between the end effector and the goal position.

rdense(q) = −∥f(q)∥2 (12)

C. Combined Approaches

I also explore two approaches that combine visual servoing
and reinforcement learning, including Residual Reinforcement
Learning and Jump Start Reinforcement Learning.

1) Residual Reinforcement learning: Residual Reinforce-
ment Learning (RRL) provides a framework for combining a
conventional feedback controller with reinforcement learning.
The goal is to use the conventional controller to perform the
parts of the task it can handle, while reinforcement learning is
used to address the residual part of the task. [15] This is done
by superposing the output of the conventional controller to the
output of the reinforcement learning policy. In my case, we
use uncalibrated visual servoing as the conventional controller
and TD3 as the reinforcement learning controller.

2) Jump Start Reinforcement Learning: Jump Start Rein-
forcement Learning (JSRL) is a meta-algorithm for using a
guiding policy to accelerate the learning of an exploration
policy to improve sample efficiency [16]. JSRL works by using
the guide policy to generate a curriculum of starting states for
the exploration policy by sampling the guide policy. Once the
performance of the combined policy exceeds a threshold, the
contribution of the guiding policy is gradually reduced until
it is no longer used. In my case, I use uncalibrated visual
servoing as the guiding policy and TD3 as the exploration
policy.

D. Experimental Setup

1) Simulation Environment:
I use a high-fidelity simulation environment that accurately
models real-world physics, including friction, dynamics, and
sensor noise. This simulation environment allows me to test
various scenarios, including changes in lighting, object occlu-
sions, and sensor inaccuracies, which are common in practical
applications.

2) Real-World Testing:
I implement the algorithms on a physical robot equipped with
high-resolution cameras and precise actuators. The testbed
is designed to replicate real-world conditions as closely as
possible, including variable lighting conditions and dynamic
objects. I address practical challenges such as camera calibra-
tion drift, environmental disturbances, and hardware limita-
tions. Techniques such as online calibration and robust control
algorithms are integrated to enhance the system’s resilience.

3) Performance Metrics:
Quantitative Metrics:

I evaluate the performance of the visual servoing and rein-
forcement learning methods using metrics such as accuracy,
robustness, sample efficiency, and computational cost. Ialso
measure task completion time and error rates to provide a
comprehensive assessment of each method’s effectiveness.

Qualitative Analysis:
Real-world performance is analyzed qualitatively by observ-

ing the robot’s behavior in various test scenarios, including
complex tasks with multiple objects and varying environmental
conditions.

E. Combined Approaches

1) Residual Reinforcement Learning (RRL):
Implementation:

Icombine visual servoing with reinforcement learning using
RRL, where visual servoing provides initial control and RL
addresses the residual errors. This combination is designed to
leverage the strengths of both methods while mitigating their
individual weaknesses. Challenges:

I address issues related to the integration of conventional
control with RL, including ensuring smooth transitions be-
tween the two control methods and managing conflicts in
control commands.

2) Jump Start Reinforcement Learning (JSRL):
Implementation: JSRL is employed to accelerate the learning
process by using visual servoing as a guiding policy. Icreate a
curriculum of starting states to guide the RL agent, gradually
reducing the influence of the guiding policy as the agent learns
to perform the task independently.

Challenges: I focus on optimizing the curriculum design
and managing the balance between exploration and exploita-
tion to improve sample efficiency and learning speed.

F. Real-World Adaptations

1) Handling Dynamic Environments with Predictive Mod-
eling:
Predictive Control Mechanisms:

I introduce Predictive Modeling techniques to anticipate and
adjust to changes in the environment. By forecasting potential
environmental changes, the robot can proactively adjust its
control strategies, improving its resilience in dynamic settings.

Computational Efficiency:
The predictive models are optimized using sparse data

techniques, which reduce the computational load by focusing
on the most relevant data points for prediction.

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

2) Hardware and Software Integration with Edge Com-
puting: To further reduce computational overhead, Iintegrate
Edge Computing techniques where processing is distributed
across multiple local devices rather than relying on a central
processor. This approach minimizes latency and improves the
system’s real-time responsiveness, particularly in complex,
dynamic environments.

Extensive testing is conducted to ensure seamless integra-
tion of hardware and software components. This includes
validating the performance of algorithms on the actual robot
and making necessary adjustments to handle hardware-specific
challenges.

VI. EXPERIMENTS

My experiment involves the WAMVisualReach environ-
ment, a simulated reaching task in Mujoco [17] using a
3/4/7-DOF Barrett Whole Arm Manipulator (WAM) robot arm
modified from the FetchReach environment [18] and WAM
Envs [19]. The 3 DOF configuration uses the first, second,
and fourth joints of the arm. The 4 DOF configuration uses
the first joints of the arm. The robot is initialized into a start
position above a table, and the goal position is randomly
generated as shown in 1. The goal of the task is for the
robot to move the end effector to the goal position. The state
space consists of the current robot joint angles q, imaged
points tracking the end effector (ue1 , ve1 , ue2 , ve2) and the goal
position (ug1 , vg1 , ug2 , vg2). The action space consists of an
update vector of the robot’s joint angles ∆q. I treat the task as
an episodic task, where the episode ends when the end effector
is within a threshold distance ϵ = 0.03 of the goal position.
For every 1000 environment steps, I evaluate the agent by
calculating the success rate over 100 episodes. We evaluate
sample efficiency by measuring the number of environmental
steps needed to learn a policy that has a success rate of at
least 90%. I repeated each experiment 5 times with different
random seeds.

(a) 3/4 DOF (b) 7 DOF

Fig. 1: Reaching task experimental setup, blue: end effector,
red: goal position

A. Uncalibrated Visual Servoing

I present results for uncalibrated visual servoing in Table II.
I find that uncalibrated visual servoing is much more sample-
efficient than the reinforcement learning methods, achieving
100% success rate after the Jacobian is initialized with central
differences.

B. Reinforcement Learning

I first compare the effect of different reward functions
and different representations like neural networks and Neu-
ral Jacobians on the sample efficiency and performance of
reinforcement learning.

1) Reward Function: As seen in Fig. 2, I found that the
dense reward function was the most sample efficient, followed
by the timestep reward function, with the sparse reward
function being the least sample efficient. Notably, the 3 DOF
results in Table I show that the dense reward function is at
least two times as sample efficient in comparison to the other
reward functions. This demonstrates that reward shaping can
significantly improve sample efficiency.

TABLE I: Reward Functions on WAMVisualReach 3DOF

Reward Function Success Rate Sample Efficiency
Sparse 0.07± 0.08 > 97000

Timestep 0.16± 0.13 > 84500
Dense 0.93 ± 0.13 41000± 11367

2) Neural Networks: I evaluated the performance of neural
network architectures with different number of layers and
neurons per layer.

Observing Fig. 4, I found that overall 2 layer neural
networks performed the best. I found that increasing the
number of neurons per layer improved sample efficiency with
diminishing returns. In Fig. 4, we note that 512 neurons per
layer achieved a similar sample efficiency as 1024 neurons per
layer. The remainder of the experiments are conducted with 2
layer neural networks with 512 neurons per layer.

I note that smaller neural network architectures, such as
1 layer of 128 neurons (18194 parameters) are capable of
achieving a final success rate of greater than 0.9, however,
they are far less sample efficient.

3) Neural Jacobian: I find that the Neural Jacobian works
well for 3 and 7 DOF robots, improving sample efficiency
significantly. 12000 steps is approximately equivalent to 1600
episodes of experience, which could be collected in less than
a day on a robot.

However, this technique does not work well for the 4 DOF
robot. I hypothesize that this is because during training the 4
DOF robot tends to move into singular configurations, which
causes the Neural Jacobian to become ill-conditioned, resulting
in divergence during training.

C. Combined Approaches

In this section, I compare methods that combine uncali-
brated visual servoing and reinforcement learning.

1) Residual Reinforcement learning: I thought that RRL
would be a promising technique for combining visual servoing
and reinforcement learning. However, I found that it did not
work very well for my task. While RRL was able to improve
the performance in the initial steps of training, it did not lead to
a significant improvement in sample efficiency when compared
to TD3 and even performed worse in the 4 and 7 DOF cases.

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

Fig. 2: Success rate of different reward functions on WAMVisualReach environment with 95% confidence intervals

Fig. 3: Success rate on WAMVisualReach environment with different algorithms with 95% confidence intervals

2) Jump Start Reinforcement Learning: I find that JSRL
works well for improving the sample efficiency of the robot.
A nice property of this technique is that during early training
the policy still has a reasonably high success rate, and can
be considered more unlikely to fail, which is important for
training safely on a real robot. Another advantage of JSRL in
contrast to Residual Reinforcement Learning is that once the
target policy has been trained, it no longer has a dependency
on the guide policy, so it can be used independently. I find
for the reaching task, I can remove the guide policy after only
20000 steps of training.

D. Qualitative Evaluation

Videos of the above experiments for qualitative evaluation
are available at https://drive.google.com/drive/folders/1xF8Z
O7cWxLBhlskcR3WSw8cPf iActh.

I note that the reinforcement learning-based methods gen-
erally have a more direct trajectory compared to uncalibrated
visual servoing. This is reflective of the fact that reinforcement
learning is capable of learning a global visuomotor policy for
the task.

TABLE II: WAMVisualReach Results

Method DOF Success Rate Reward Sample Efficiency

UVS
3 1.00± 0.00 −1.38± 0.05 60± 0
4 1.00± 0.00 −1.35± 0.08 80± 0
7 1.00± 0.00 −1.16± 0.08 140± 0

TD3
3 0.87± 0.22 −1.46± 0.39 32400± 7499
4 0.95± 0.03 −1.22± 0.06 39800± 6431
7 0.96± 0.03 −1.14± 0.11 33200± 2561

TD3-NJ
3 1.00± 0.00 −1.18± 0.09 12200± 1939
4 0.01± 0.00 −9.16± 0.00 −
7 1.00± 0.00 −1.04± 0.07 10400± 3499

RRL
3 0.93± 0.08 −1.35± 0.20 > 50000
4 0.83± 0.16 −1.77± 0.70 > 50000
7 0.79± 0.11 −2.05± 0.80 > 50000

JSRL
3 0.96± 0.03 −1.24± 0.10 30400± 11741
4 0.98± 0.01 −1.12± 0.06 18800± 2638
7 0.92± 0.09 −1.30± 0.22 21200± 4956

VII. RESULTS

A. Reward Functions

Dense reward functions demonstrated significantly higher
sample efficiency, particularly in the 3 DOF configuration.

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

This highlights the importance of reward shaping in improving
RL performance.

B. Neural Networks

Two-layer neural networks with 512 neurons per layer
provided the best balance between sample efficiency and task
success. The Neural Jacobian method showed promise in
enhancing sample efficiency, particularly for the 3 and 7 DOF
robots.

C. Combined Approaches

Jump Start Reinforcement Learning (JSRL) proved effective
in improving sample efficiency and maintaining a high success
rate during early training. Unlike Residual Reinforcement
Learning, JSRL does not depend on a guiding policy once
trained, making it suitable for real-world applications.

VIII. CONCLUSION

I assessed the sample efficiency and performance of un-
calibrated visual servoing and reinforcement learning for a
reaching task. I found that techniques that combine visual
servoing and reinforcement learning can greatly improve the
sample efficiency of reinforcement learning.

Future work includes comparing the performance of the
different methods on a real robot and comparing the different
methods on a more challenging task such as a pick-and-place
task. Further research into improving the training stability of
the Neural Jacobian representation with reinforcement learning
may also be promising.

REFERENCES

[1] M. Jagersand and R. Nelson, “Visual space task specification, planning
and control,” in Proceedings of International Symposium on Computer
Vision - ISCV, 1995, pp. 521–526.

[2] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” CoRR, vol. abs/1504.00702, 2015. [Online].
Available: http://arxiv.org/abs/1504.00702

[3] F. Chaumette and S. Hutchinson, “Visual servo control. i. basic
approaches,” pp. 82–90, dec 2006. [Online]. Available: https:
//doi.org/10.1109/mra.2006.250573

[4] M. Jagersand, O. Fuentes, and R. Nelson, “Experimental evaluation of
uncalibrated visual servoing for precision manipulation,” in Proceedings
of International Conference on Robotics and Automation. IEEE, 1997.
[Online]. Available: https://doi.org/10.1109/robot.1997.606723

[5] F. Chaumette and S. Hutchinson, “Visual servo control. i. basic ap-
proaches,” IEEE Robotics & Automation Magazine, vol. 13, no. 4, pp.
82–90, 2006.

[6] P. Corke, Robotics and control: fundamental algorithms in MATLAB®.
springer Nature, 2021, vol. 141.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[8] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and large-
scale data collection,” The International journal of robotics research,
vol. 37, no. 4-5, pp. 421–436, 2018.

[9] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in 2017 IEEE international conference
on robotics and automation (ICRA), 2017, pp. 3357–3364.

[10] A. Farahmand, A. Shademan, M. Jagersand, and C. Szepesvari,
“Model-based and model-free reinforcement learning for visual
servoing,” in 2009 IEEE International Conference on Robotics
and Automation. IEEE, may 2009. [Online]. Available: https:
//doi.org/10.1109/robot.2009.5152834

[11] Y. Yuan and A. R. Mahmood, “Asynchronous reinforcement learning
for real-time control of physical robots,” 2022.

[12] M. Przystupa, M. Dehghan, M. Jagersand, and A. R. Mahmood,
“Analyzing neural jacobian methods in applications of visual
servoing and kinematic control,” 2021. [Online]. Available: https:
//arxiv.org/abs/2106.06083

[13] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approx-
imation error in actor-critic methods,” 2018.

[14] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/
20-1364.html

[15] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea,
E. Solowjow, and S. Levine, “Residual reinforcement learning for robot
control,” 2018. [Online]. Available: https://arxiv.org/abs/1812.03201

[16] I. Uchendu, T. Xiao, Y. Lu, B. Zhu, M. Yan, J. Simon, M. Bennice, C. Fu,
C. Ma, J. Jiao, S. Levine, and K. Hausman, “Jump-start reinforcement
learning,” 2022. [Online]. Available: https://arxiv.org/abs/2204.02372

[17] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[18] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Pow-
ell, J. Schneider, J. Tobin, M. Chociej, P. Welinder, V. Kumar, and
W. Zaremba, “Multi-goal reinforcement learning: Challenging robotics
environments and request for research,” 2018.

[19] K. Johnstonbaugh, “Barrett wam environments in openai gym,”
https://github.com/KerrickJohnstonbaugh/wam envs, 2022.

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

Fig. 4: Success rate on WAMVisualReach with different neural network architectures with 95% confidence intervals

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

