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Abstract— Line simplification algorithms are often used to render 

high-resolution geographic features at appropriate resolutions when 

applied to polygons. They are generalization techniques in which 

selective vertices are removed from a line feature to eliminate details 

whilst preserving the line’s basic shape. In this paper, two different 

line simplification algorithms (Douglas-Peucker and Visvalingam-

Whyatt) are used in conjunction with spatial join of geo-referenced 

mobility and air quality data, to reduce the size of the polygon files. 

A filter-and-refinement dimensionality reduction-based approach is 

then used to join the data. This framework allows for an optimized 

spatial join on an integrated schema through a state-of-the-art filter-

and-refine based approach. The reduced files can then be used in 

geospatial related data science tasks such as DBSCAN, clustering, 

and regression at lower computational costs. Our experimental 

results show that incorporating a reduction approach such as line 

simplification before performing the spatial join can significantly 

reduce the computational cost and improve the performance with 

the number of vertices reduced by 94% after simplification and 

accuracy, MAPE is minimized with a low score of 0.048 and 0.049 

for DP-Map shaper and VW-Map shaper respectively. 

Keywords—AQP, Douglas Peucker algorithm, line 

simplification, Visvalingam-Whyatt algorithm, spatial join 

I. INTRODUCTION 

The growing presence of the Internet of Things (IoT) in all 

aspects of our life has brought about an exponential increase in 

the data generated daily, a large majority of which is spatial 

(a.k.a. geo-referenced or spatially-tagged). Certainly, the 

processing of these large amounts of data is incredibly taxing, 

more so when data joins are carried out as one of the most 

fundamental skills in data analysis that is used to gather useful 

insights. In response, cultivating and efficiently analyzing this 

spatial data in a computational efficient manner has been a 

growing area of research. Geospatial join is a computationally 

costly workload that is more frequently being used and applied 

in dynamic smart city application scenarios, specifically those 

that require fusing data from multiple georeferenced 

heterogeneous data streams. For example, authors in [1] have 

described a very interesting scenario where there is a need to 

merge hyperlocal air quality and mobility data of a city in an 

attempt to unleash possible autocorrelations between vehicles 

density and the air quality on a street-by-street level. Both 

mobility and air quality data are georeferenced, meaning that 

they are tagged with locational coordinates. This scenario 

requires an advanced geospatial join processing technique that 

goes beyond the traditional woks of geospatial join methods. 

The problem is mostly attributed to the fact that geospatial point 

data need to be joined with shapefile polygons data representing 

the administrative city districts. Those shapefiles are normally 

huge in size, which negatively affects the overall join 

performance, thus reducing their size is becoming 

indispensable. Line simplification is one of the methods used to 

reduce the geometric points in a geographical space (specially 

applied to vector line and polygon shapes), to reduce their 

storage size, whilst maintaining their general topology of the 

shape. Two of the most prominent line simplification 

algorithms are Douglas-Peucker [2] and Visvalingam-Whyatt 

[3]. This paper aims to explore the results of the line 

simplification algorithms when used alongside spatial joins, 

across two different implementation techniques (Shapely 

library in Geo Python and Mapshaper.org [4]). The purpose of 

this combination is to minimize  computational costs whilst 

preserving the important information, in a way that ensures, to 

a significant extent that it does not negatively impact any 

analysis thereafter. The rest of the paper is organized as 

follows: Section II covers the related state-of-the-art works in 

the field; Section III defines the methodology and overview of 

the models; Section IV details the results and their discussion; 

and Section V concludes with the findings of this paper and 

future work perspectives. 

II. RELATED LITERATURE 

Given the emergence of mixed workloads in smart cities 
inspired by the adoption of Internet of Things (IoT), there is a 
growing importance in finding the geographical regions to 
which data streams belong, leading to geospatial data. Its 
development revealed that processing and running geospatial 
data is computationally intensive. In response, line 
simplification algorithms were developed to reduce the size of 
the data whilst preserving the overall accuracy of the data – a 
compromise that is particularly important in big data handling 
where computer resources are expensive [5, 6].  

Recently, authors in [5] proposed a polygon simplification 
method, named GeoRAP, built on geospatial approximate 
processing. Their framework is based on the Ramer-Douglas-
Peucker line simplification algorithm to reduce the area 
coverage as well as a version of stratified spatial sampling to 
minimize the number of strata, and subsequently data points in 
each strata. This approach increases the throughput whilst 
minimizing response time, preserving the important information 
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which makes it more efficient for subsequent data science tasks 
such as complex geo-statistics and aggregation queries [7].   

In another approach, authors in [8] introduced an adaptive 
spatial-aware approximate query processing solution (termed as 
SpatialSSJP) that focuses on stream-static geospatial joins and 
support Quality-of-Service goals and online aggregations. The 
paper proposes an efficient online sampling design to select a 
balanced and representative geospatial data from the stream 
using the Spark Structured Streaming framework [9], for a 
stream-static geospatial join operator downstream, even on large 
join workloads, with an improved performance that is capped at 
approximately 10-50% as compared with the baseline Apache 
Spark methods.  

Similarly, researchers in [10] tackle data overloading 
through a spatial approximation query processing method, 
named ApproxGeoViz, where efficient region-based geo-maps 
from fast arriving big georeferenced data streams can be 
generated. The model was tested on real smart city data and 
evaluated on time-based and accuracy-based QoS constraints. 
Correspondingly, [5] presented a similar methodology, 
ApproxGeoAgg, designed for optimizing aggregation queries in 
spatial data analytics requiring grouping geospatial objects into 
predefined clusters of administrative polygons study areas. This 
study also involved cropping polygons to reduce their size and 
reduce the overall geospatial join cost in comparison to the full 
version. 

In terms of employing spatial join for fusing heterogeneous 
georeferenced data streams, several works can be traced in the 
literature. Authors in [1] applied an filter-and-refinement 
approach for integrating geotagged air quality and mobility data 
with different spatial and temporal resolutions for smart city and 
urban analytics. In the same vein, authors in [11] have applied a 
method that is based on filter-and-refinement spatial join 
approach for joining meteorological and mobility data at scale 
with time-based and accuracy-based QoS guarantees. 

As for the line generalization applied to spatial approximate 
data analytics, In the same vein, [12] have designed a modern 
spatial big data analytics framework which incorporates tools 
for trajectory data compression using DP line simplification  
algorithm intrinsically within its architectural design. Similarly 
authors [13] designed an Enhanced Douglas–Peucker (EDP) 
algorithm that employs a constellation of enhanced spatial–
temporal constraints (ESTC) for simplifying and compressing 
trajectory data streams. Within the same consortium, [14] 
applied a modern DP algorithm based approach as a frontstage 

quick-and-dirty sieve to minimize the numbers of trajectory data 
points fed  for clustering tasks downstream in the main system. 

III. METHODOLOGY 

In this section, as shown in figure 1, the methodology 
employed in this study is explained, including steps taken for 
data preprocessing, and the different algorithms and tools 
utilized to perform the line simplification. 

An integral part of data science involves the combination and 
analysis of data from different sources. Spatial data, i.e. data that 
references a geographical location, is dense by nature, having 
information of both the topic such as urban information, or air 
quality readings, as well as the location. As the name suggests, 
spatial join is the combination of two sets of spatial data based 
on their geographic relationship, naturally this makes the data 
load for analysis more complex and computationally heavy. 
Despite this fact, this operation remains necessary as it improves 
the visualization of the data and enables deeper insights and 
more detailed spatial analysis.  

To improve the computational efficiency of processing 
spatial data, line generalization algorithms exist as a set of 
techniques focused on reducing data points without 
compromising vital information depending on their relevance in 
a specific model, to determine the best method of representing 
the data. One of the subfields of generalization is line 
simplification, which decreases the data volume and complexity 
by reducing the number of vertices in the vector representation 
of geospatial data. The effect this reduction has on a systems 
complexity is particularly evident in large datasets. 

This paper applies geospatial join on large hyperlocal air 

quality data to compare the effectiveness of two common line 

simplification algorithms for performing faster geospatial joins, 

those are Douglas-Peucker (DP hereafter for short) and 

Visvalingam-Whyatt (VW hereafter for short) algorithms, 

which are discussed in the next two subsections. 

A. Visvalingam-Whyatt Algorithm 

Visvalingam-Whyatt (VW), introduced in 1993 [3], works by 

removing the least significant points in a given line, and treating 

the remainder of the line as a new one. It does that by 

considering the triangular features and recursively eliminating 

the smallest triangles as they are assumed to have the least 

amount of contribution. By removing the triangles with the 

smallest area, the important geometric characteristics are 

preserved. The VW algorithm is relatively easy to compute, and 

its straightforward framework makes it an efficient algorithm. 

For visualization purposes, this method is often preferred as 

more significant features on the map tend to be preserved, 

forming large triangles. 

B. Douglas-Peucker Algorithm 

Another commonly used line simplification technique is the 
Douglas-Peucker (DP) algorithm [2]. Preceding the VW 
algorithm, DP was introduced in 1973 and works by eliminating 
points on a polygonal chain whilst preserving the original shape 
of the polygon. As a result, this algorithm is particularly useful 
to applications where simplification is needed without 
significantly altering the appearance of the polygon and 

 
Fig. 1 methodology overview 
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maintaining its visual integrity whilst reducing the 
computational power required. The algorithm takes a tolerance 
parameter that adjusts the degree of simplification, making it 
easy to scale the outcomes to varying levels of detail. Several 
vector line generalization algorithms are employed in the 
literature, which are categorized into five groups in [15]. For 
example, Reumann–Witkam routine [16], the Douglas–Peucker 
(DP) algorithm [2], and an algorithm by Visvalingam and 
Whyatt (VW) [3]. Global algorithms (e.g., DP) considers the 
entire line while reducing the line, as opposed to other categories 
which work with segments of the entire line. DP and VW are 
preferred as they are more accurate for preserving the original 
line’s shape as corroborated in [15]. Having said that, we 
employ the DP and VW algorithms as integral parts of our 
system system in this paper. 

C. Data Importing and Preprocessing 

For testing the different line simplification algorithms, two 
publicly available georeferenced mobility datasets were chosen. 
The first dataset contains information about New York City 
Polygons, including the geographical boundaries for the 
neighborhoods across the city, where each neighborhood is 
represented by a polygon, a form of vector geospatial 
representation (in the form of GeoJSON file extension). The 
dataset has 310 enteries each consisting additional information 
such as the neighborhood name, borough, borough code and a 
unique identifier that links to more detailed resources about the 
neighborhood. The second dataset used is a unique geotagged 
air quality dataset collected using low-cost air-quality sensors, 
consisting of 170K records, each entry includes a timestamp, 
geographic coordinates, temperature, humidity and particulate 
matter levels.  

In this phase, a series of pre-processing steps were 
performed to make sure that the geographical data was cleaned, 
consistent, and suitable for further analysis and computations. 
The data that was gathered in CVS and GeoJSON formats 
including multiple attributes such as geographical boundaries 
(polygons and point geometries, longitude, and latitude) and 
environmental data (such as temperature, humidity, and pm25).  

The first step was to clean the data by removing erroneous 
coordinates (coordinates where the longitude and latitude are 
equal to (0,0) respectively), and missing data were dealt with by 
filling them. To standardize the analysis, all geographical data 
was converted into a uniform coordinate reference system 
(CRS), namely, EPSG 4326. This uniform CRS was used to 
ensure that the accuracy of the geographical measures such as 
distance and area are maintained and accurate across the dataset. 

To better understand the data, feature extraction and 
visualization tasks were performed, out of necessity for our line 
simplification analysis. Feature extraction includes finding the 
area in square meters and computing the number of vertices of 
the data. Evaluating these features played a role in assessing the 
efficiency of our data simplification algorithms thereafter in this 
study. In Figure 2, After pre-processing the data, spatial join was 
performed by joining the air quality data with the neighborhood 
data and a heatmap was generated as depicted to visualize the 
varying levels of air quality. The bright areas in the map indicate 
areas with better air quality, given that they have a lower 
concentration of particulate matters (pm10 and pm2.5) 

pollutants. On the other hand, the darker areas indicate higher 
concentrations of the pollutants, these areas may be closer to 
major highways or areas with high vehicle emissions. 

D. Simplification Algorithms 

In this section, the different algorithms and frameworks used 
are outlined. Two algorithms (DP and VW) were evaluated on 
more than one framework. 

The DP algorithm was implemented via two different 
frameworks: the first algorithm is implemented using the 
Shapley library provided by GeoPython,  for precise geometric 
manipulation with a tolerance of 0.001, and the second 
algorithm is implemented using Mapshaper.org, a web-based 
simplifier using a tolerance of 0.1%, for more efficient results 
and less overlapping between the neighborhoods, allowing for a  
comprehensive comparison of  the data in terms of data 
reduction and geometry preservation. 

Douglas-Peucker with Shapely (hereafter DP-Shapely for 
short). This approach implemented the DP algorithm which uses 
a distance measure to test each single point by using the 
GeoPython Shapely library to simplify the geographical data. As 
mentioned in section II, the DP algorithm mainly reduces the 
number of vertices in each polygon while preserving the 
topology. The implementation of the function which iterates 
through each feature of the GeoJSON data, takes the polygon 
geometry as an input and applies the ‘simplify()’ method 
provided by the Shapely library, which takes a specified 
tolerance level as input; this determines how much of the 
geometry will be simplified. In general, they are indirectly 
proportional such that when the tolerance value increases, the 
number of vertices decrease. In order to maintain the original 
shape and minimize overlapping between the vertices, the 
tolerance was set to 0.001. As a result, a new dataset in the 
format of GeoJSON was created where each polygon contains a 
lower number of vertices. 

Douglas-Peucker with Mapshaper.org [4]  (hereafter DP-
Mapshaper for short): A second tool was introduced to apply the 
DP algorithm via Mapshaper, which was designed for efficient 
map simplification. Mapshaper is a generalization web service 
developed to help mapmakers simplify and smooth their vector 
line work using a suite of visual-editing tools. This approach is 
unique in that Mapshaper can handle large data more efficiently 
than Shapley while minimizing overlapping as much as 
possible, making it appropriate for extensive geographical data. 
The original GeoJSON file is fed into the Mapshaper and 
executes the ‘simplify()’ command with a specified tolerance, 
which was set to 0.1% corresponding to a tolerance of 0.001. 

 
Fig. 2 heatmap visualizing the varying levels of air quality, NYC USA. 
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The command regulates the complexity of the polygon geometry 
in a similar manner to Shapely while simultaneously optimizing 
for processing and supporting various output formats, which 
makes it easier for subsequent analysis. The last step is exporting 
the simplified data back into GeoJSON format for further 
processing. To compare the results of the DP simplifier, the VW 
simplifier using the Mapshaper tool was examined. Similar to 
the previous method, this algorithm was implemented to analyze 
and provide insights about the data. 

Visvalingam-Whyatt with Mapshaper.org (VW-Mapshaper 
hereafter for short). This simplification technique was added for 
comparison and analysis purposes. The VW method applies an 
area measurement by using the Mapshaper web service. This 
method is different from DP as VW works by removing the 
points that result in the smallest area change first, making it more 
preserved in terms of data visualization. It works similarly to the 
DP algorithm with the Mapshaper.org tool but by replacing the ‘simplify()’ command with ‘method=Visvalingam’. 
E. Statistical Analysis 

To evaluate the performance of the data simplification 

algorithm against the original data, several statistical metrics 

were examined after applying the data processing methods 

including aggregation, normalization, and merging the original 

and simplified data based on their neighborhoods. The metrics 

examined were: Mean Absolute Percentage Error (MAPE), 

Root Mean Square Error (RMSE), Spearman Correlation, and 

Jensen-Shannon divergence (hereafter JSD for short). 

a) Root Mean Square Error (RMSE): This measure is 

used to calculate the average magnitude of the error between 

the original and simplified data. It shows clearly how much the 

simplification deviates from the original in terms of spatial 

accuracy. The formula is represented in (1) Where Oi and Pi are 

the original values and simplified values, respectively, and n is 

the number of observations. 

RMSE = �(1

�) ∑ (�� �  ��)2 �� !          (1) 

b) Mean Absolute Percentage Error (MAPE): MAPE is 

used to express the error as a percentage of the original data, 

which gives us an insight about the errors in terms of relative 

size. The formula is shown in (2). 

MAPE = 
!""%

� ∑ $%&'(&
%&

$�� !  (2) 

c) Spearman Correlation: The spearman correlation is a 

statistical test to measure the strength of a monotonic 

relationship. A monotonic function is a function that either 

never increases or decreases as its independent variable 

increases between paired data. In this case, the comparison is 

computed between the original neighborhood data and the 

simplified neighborhood data. It is denoted by rs and follows 

the constraint below, the closer rs is to 1 the stronger the 

monotonic relationship [10], such that �1 + ,- + 1. 

d) Jensen-Shannon (JS) Divergence: JS is a statistical 

method used to measure the similarity between two probability 

distributions. It is defined in (3) where H(.) represents the 

Shannon entropy of a distribution. It is important that this 

metric is minimised, since a lower score indicates that the 

important information between the two sets of data, that is, 

original and simplified is preserved, whilst reducing the data 

size. 

/01(�, 3) = 4(5) � !
6 (4(�) 7 4(3)) (3) 

IV. RESULTS AND DISCUSSION 

For comparison purposes, the polygons representing New 

York City neighborhoods in the USA were generated, and the 

same diagram was generated for all implementations of the 

simplification algorithms, to analyze their effectiveness. 

Applying the DP simplifier with shapely and a tolerance of 

0.001 produced the diagram in Figure 3.a, where some 

overlapping in the boundaries of the neighborhoods is evident. 

To resolve the overlapping issue encountered while using the 

DP simplifier with GeoPython Shapely, the Mapshaper 

framework with a tolerance of 0.1% was explored. This is due 

to Mapshaper’s ability to preserve the topology and boundaries 

whilst minimizing overlapping between the neighborhoods. As 

 

 
 

 

a. DP-Shapely  b. DP-Mapshaper 

Fig. 3 Polygon diagram of NYC neighborhoods applying DP algorithm 

 

Fig. 5 Number of Vertices vs. Tolerance vs. Average Time 

 
Fig. 4 Number of Vertices vs. Tolerance, NYC polygons 
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a result, the model was able to ensure less overlapping in the 

simplified data and the retention of boundaries between 

adjacent polygons. The resulting diagram can be seen in Figure 

3.b. 
Lastly, the VW simplifier was applied using Mapshaper, 

which shows more details with 0.1% tolerance whilst also 
preserving the topology and minimizing overlapping. This is due 
to the retention of boundaries between adjacent polygons 
feature, which allows the map to appear to be more detailed.This 
tolerance level determines how much the simplified lines can 
deviate from the original lines. The overlapping between the 
boundaries of the neighborhoods is a result of the tolerance 
applied. For a deeper understanding of the results, the number 
of vertices per neighborhood as well as their accuracies were 
computed. 

Figure 4 depicts a graph that compares the number of 

vertices in the polygons with the data before and after 

simplification. The blue line represents the original geometries 

while the orange line represents the simplified geometries. It is 

evident from the graph that the original polygon of the 

neighborhoods has number of vertices much higher than the 

simplified in which for the simplified the number of vertices 

decrease with increasing tolerance, indicating a loss in detail as 

the number of vertices decrease. As for the original polygon, it 

remains constant with no significant changes as the tolerance 

increases; this indicates that the number of vertices in the 

original geometry is preserved across all tolerance levels, as 

expected given that no simplification was applied to the original 

data. 
Additionally, figure 5 shows the computational time 

required for performing the join operation, specifically a spatial 
join and the number of vertices produced after line 
simplification were analyzed in relation to the tolerance levels. 
The straight lines represent the original data before line 
simplification and the dotted line represents the data after line 
simplification. Correspondingly, the red lines represent the 
average time of the spatial join prior to and following the line 
simplification while the blue lines represent the vertices prior to 
and following line simplification using DP-Shapely. 

The graph reveals that the tolerance is indirectly proportional 
to the average time of the spatial join, as well as the number of 
vertices after simplification; that is, as the tolerance increases, 
the average time and number of vertices decrease. This result 
was expected given that increasing the tolerance decreases the 
number of vertices, thereby reducing the time needed to perform 
the join operation. It is also evident that the average time taken 
to perform the spatial join on the original and simplified data 

exhibit similar behaviors as visible from the parallel trend 
observed in the figure, although the average time of the original 
starts very high and has a drastic decrease, this behavior could 
be attributed to various factors, although it is not possible to 
determine the specific cause. In addition to the simplified 
models naturally having a lower number of vertices. Generally, 
it appears that the number of vertices of the original data remain 
constant even with increasing tolerance, which is expected given 
that the original data is not subjected to any changes. 

Further, to determine the optimal tolerance score for the 
spatial data join, figure 6 is used to show the accuracy rate of the 
join against the tolerance. The graph compares the accuracy of 
spatial joins between the two sets of geographical data, where 
the neighborhood and air quality data is evaluated to see how 
simplification affects the joins. 

The tolerance values are ranging from 0.001 and 0.010 with 
an increment 0.001. The tolerance value determines how the 
vertices are simplified in the original data. As evident from the 
graph,the accuracy decreases with increasing tolerance, 
indicating that there is a tradeoff between reducing the 
complexity of the data via simplification and maintaining the 
accuracy. It can also be seen from the graph that there is a 
significant drop in accuracy at around 0.007 tolerance, this could 
be an indication that important geographical information 
necessary for the joins are being removed. This graph can also 
be used to show the optimal tolerance which seems to be the 
lowest at approximately 0.001. This tolerance implies that less 
simplification preserves the most important geographical 
information, given that with increasing tolerance, less vertices 
are retained thus, resulting in simpler polygons with less 
accurate information. Figure 7 compares the number of vertices 
between the different simplifiers, as evident from Table I, the 
original – referring to data without any line simplification, has 
the highest number of vertices. Comparatively, the data with line 
simplification algorithms have much lower number of vertices. 
DP-Shapely was able to remove the highest number of vertices 
while retaining only 1,653 vertices, followed by 1,743 and 2,031 
retentions for DP Mapshaper and VW Mapshaper respectively. 
While these results may indicate that DP-Shapely is the most 
effective in simplifying the polygons, the graphical 
representations, Figures 3, 4 and 5 revealed that shapely causes 
overlap in the data. As such, Mapshaper proves to be the better 
method for accuracy, as the increase in number of vertices is 
very minor, but the accuracy is assumed to improve greatly as it 
avoids overlapping and preserves the geometric characteristics 
and topology. Table I  compares the geographical area of the 
data and the total number of vertices before and after 
simplification. The tolerances used are the following: DP-

 

Fig. 6 Spatial Join Accuracy Rate vs. Tolerance 
 

Fig. 7 Number of Vertices across the algorithms 
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Shapely  simplifier with a tolerance of  0.001, DP-Map shaper 
simplifier with 1% tolerance, and VW-Map shaper simplifier 
with 1% tolerance were used. 

The readings show that the results were similar between the 
two algorithms, making them both effective. MAPE is 
minimized with a low score of 0.048 and 0.049 for DP-
Mapshaper and VW-Mapshaper, respectively, suggesting a very 
accurate prediction and indicating the effectiveness of the 
model. The algorithms also computed promising Spearman 
Correlation values of 0.88 and 0.92, respectively, VW 
performing slightly better, statistically indicating that the 
original and simplified data are highly correlated and 
comparable, further reaffirming that the geospatial data is 
preserved despite reducing the number of vertices by 
approximately 94%. Further, the Jenson-Shannon Divergence 
results were relatively low at 0.33 and 0.35, reiterating the 
similarity between the original and simplified data – that is, the 
data is sufficiently well-preserved whilst decreasing the 
computational cost. The correlation and divergence metrics are 
especially useful for aggregation queries, which are optimized 
in this analysis. As the results are relatively comparable, the 
question as to which algorithm to use depends on the 
application. Generally, DP is better suited for general purpose 
and adaptive simplification, where the level of detail can be 
dynamically set, whereas VW is more often used for visual and 
area-focused applications. 

TABLE I.  COMPARISON OF RESULTS 

V. CONCLUSIONS AND FUTURE WORKS 

This paper compares the performance of different line 

simplification algorithms namely Douglas-Peucker and 

Visvalingam-Whyatt. Two different tools – Shapely and Map 

shaper were used to compare DP while only Map shaper was 

used for the VW. It was evident from the results that both 

algorithms performed in a similar manner via the Map shaper 

interface, computing promising evaluation metrics. The results 

of these models prove to be essential as the need for spatial joins 

increases, seeing as it is computationally expensive in its full 

form. This approach allows the data size to be significantly 

reduced whilst preserving the geometric characteristics of the 

data as well as its visual topology. In doing so, the efficiency of 

the programs can be greatly improved, cutting down on 

computational costs. This is particularly important for data 

science aggregation tasks, including comparisons, DBSCAN 

(Density Based Spatial Clustering of Applications with Noise), 

clustering, and regression; allowing analysts to make more 

informed, strategic decisions.  
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Metric 
Algorithm 

Original 
DP-Shapely 

DP-Map 

shaper 

VW-Map 

shaper 

Tolerance 0.001 1% 1% 

Area (m2) 2536228.4 2311793.02 2792454.7 2260661.6 

No. of 

Vertices 
32,388 1,653 1,743 2,031 

RMSE - - 62.69% 65.00% 

MAPE - - 0.04758 0.04853 

Spearman 

Correlation 
- - 0.88370 0.92074 

JSD - - 0.33109 0.35564 
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