
Line Simplification for Efficient Approximate Join

Queries On Big Geospatial Data

Fatima Ahmed Alhammadi , Haya Almadhloum Alsuwaidi, Shooq Abdelrahman Alzarooni, Isam Mashhour Al Jawarneh

Department of Computer Science, University of Sharjah, P.O.Box. 27272 Sharjah, United Arab Emirates
U23102315@sharjah.ac.ae, U23102277@sharjah.ac.ae, U23102399@sharjah.ac.ae, ijawarneh@sharjah.ac.ae

Abstract— Line simplification algorithms are often used to render

high-resolution geographic features at appropriate resolutions when

applied to polygons. They are generalization techniques in which

selective vertices are removed from a line feature to eliminate details

whilst preserving the line’s basic shape. In this paper, two different

line simplification algorithms (Douglas-Peucker and Visvalingam-

Whyatt) are used in conjunction with spatial join of geo-referenced

mobility and air quality data, to reduce the size of the polygon files.

A filter-and-refinement dimensionality reduction-based approach is

then used to join the data. This framework allows for an optimized

spatial join on an integrated schema through a state-of-the-art filter-

and-refine based approach. The reduced files can then be used in

geospatial related data science tasks such as DBSCAN, clustering,

and regression at lower computational costs. Our experimental

results show that incorporating a reduction approach such as line

simplification before performing the spatial join can significantly

reduce the computational cost and improve the performance with

the number of vertices reduced by 94% after simplification and

accuracy, MAPE is minimized with a low score of 0.048 and 0.049

for DP-Map shaper and VW-Map shaper respectively.

Keywords—AQP, Douglas Peucker algorithm, line

simplification, Visvalingam-Whyatt algorithm, spatial join

I. INTRODUCTION

The growing presence of the Internet of Things (IoT) in all

aspects of our life has brought about an exponential increase in

the data generated daily, a large majority of which is spatial

(a.k.a. geo-referenced or spatially-tagged). Certainly, the

processing of these large amounts of data is incredibly taxing,

more so when data joins are carried out as one of the most

fundamental skills in data analysis that is used to gather useful

insights. In response, cultivating and efficiently analyzing this

spatial data in a computational efficient manner has been a

growing area of research. Geospatial join is a computationally

costly workload that is more frequently being used and applied

in dynamic smart city application scenarios, specifically those

that require fusing data from multiple georeferenced

heterogeneous data streams. For example, authors in [1] have

described a very interesting scenario where there is a need to

merge hyperlocal air quality and mobility data of a city in an

attempt to unleash possible autocorrelations between vehicles

density and the air quality on a street-by-street level. Both

mobility and air quality data are georeferenced, meaning that

they are tagged with locational coordinates. This scenario

requires an advanced geospatial join processing technique that

goes beyond the traditional woks of geospatial join methods.

The problem is mostly attributed to the fact that geospatial point

data need to be joined with shapefile polygons data representing

the administrative city districts. Those shapefiles are normally

huge in size, which negatively affects the overall join

performance, thus reducing their size is becoming

indispensable. Line simplification is one of the methods used to

reduce the geometric points in a geographical space (specially

applied to vector line and polygon shapes), to reduce their

storage size, whilst maintaining their general topology of the

shape. Two of the most prominent line simplification

algorithms are Douglas-Peucker [2] and Visvalingam-Whyatt

[3]. This paper aims to explore the results of the line

simplification algorithms when used alongside spatial joins,

across two different implementation techniques (Shapely

library in Geo Python and Mapshaper.org [4]). The purpose of

this combination is to minimize computational costs whilst

preserving the important information, in a way that ensures, to

a significant extent that it does not negatively impact any

analysis thereafter. The rest of the paper is organized as

follows: Section II covers the related state-of-the-art works in

the field; Section III defines the methodology and overview of

the models; Section IV details the results and their discussion;

and Section V concludes with the findings of this paper and

future work perspectives.

II. RELATED LITERATURE

Given the emergence of mixed workloads in smart cities
inspired by the adoption of Internet of Things (IoT), there is a
growing importance in finding the geographical regions to
which data streams belong, leading to geospatial data. Its
development revealed that processing and running geospatial
data is computationally intensive. In response, line
simplification algorithms were developed to reduce the size of
the data whilst preserving the overall accuracy of the data – a
compromise that is particularly important in big data handling
where computer resources are expensive [5, 6].

Recently, authors in [5] proposed a polygon simplification
method, named GeoRAP, built on geospatial approximate
processing. Their framework is based on the Ramer-Douglas-
Peucker line simplification algorithm to reduce the area
coverage as well as a version of stratified spatial sampling to
minimize the number of strata, and subsequently data points in
each strata. This approach increases the throughput whilst
minimizing response time, preserving the important information

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

979-8-3503-5475-1/24/$31.00 ©2024 IEEE

which makes it more efficient for subsequent data science tasks
such as complex geo-statistics and aggregation queries [7].

In another approach, authors in [8] introduced an adaptive
spatial-aware approximate query processing solution (termed as
SpatialSSJP) that focuses on stream-static geospatial joins and
support Quality-of-Service goals and online aggregations. The
paper proposes an efficient online sampling design to select a
balanced and representative geospatial data from the stream
using the Spark Structured Streaming framework [9], for a
stream-static geospatial join operator downstream, even on large
join workloads, with an improved performance that is capped at
approximately 10-50% as compared with the baseline Apache
Spark methods.

Similarly, researchers in [10] tackle data overloading
through a spatial approximation query processing method,
named ApproxGeoViz, where efficient region-based geo-maps
from fast arriving big georeferenced data streams can be
generated. The model was tested on real smart city data and
evaluated on time-based and accuracy-based QoS constraints.
Correspondingly, [5] presented a similar methodology,
ApproxGeoAgg, designed for optimizing aggregation queries in
spatial data analytics requiring grouping geospatial objects into
predefined clusters of administrative polygons study areas. This
study also involved cropping polygons to reduce their size and
reduce the overall geospatial join cost in comparison to the full
version.

In terms of employing spatial join for fusing heterogeneous
georeferenced data streams, several works can be traced in the
literature. Authors in [1] applied an filter-and-refinement
approach for integrating geotagged air quality and mobility data
with different spatial and temporal resolutions for smart city and
urban analytics. In the same vein, authors in [11] have applied a
method that is based on filter-and-refinement spatial join
approach for joining meteorological and mobility data at scale
with time-based and accuracy-based QoS guarantees.

As for the line generalization applied to spatial approximate
data analytics, In the same vein, [12] have designed a modern
spatial big data analytics framework which incorporates tools
for trajectory data compression using DP line simplification
algorithm intrinsically within its architectural design. Similarly
authors [13] designed an Enhanced Douglas–Peucker (EDP)
algorithm that employs a constellation of enhanced spatial–
temporal constraints (ESTC) for simplifying and compressing
trajectory data streams. Within the same consortium, [14]
applied a modern DP algorithm based approach as a frontstage

quick-and-dirty sieve to minimize the numbers of trajectory data
points fed for clustering tasks downstream in the main system.

III. METHODOLOGY

In this section, as shown in figure 1, the methodology
employed in this study is explained, including steps taken for
data preprocessing, and the different algorithms and tools
utilized to perform the line simplification.

An integral part of data science involves the combination and
analysis of data from different sources. Spatial data, i.e. data that
references a geographical location, is dense by nature, having
information of both the topic such as urban information, or air
quality readings, as well as the location. As the name suggests,
spatial join is the combination of two sets of spatial data based
on their geographic relationship, naturally this makes the data
load for analysis more complex and computationally heavy.
Despite this fact, this operation remains necessary as it improves
the visualization of the data and enables deeper insights and
more detailed spatial analysis.

To improve the computational efficiency of processing
spatial data, line generalization algorithms exist as a set of
techniques focused on reducing data points without
compromising vital information depending on their relevance in
a specific model, to determine the best method of representing
the data. One of the subfields of generalization is line
simplification, which decreases the data volume and complexity
by reducing the number of vertices in the vector representation
of geospatial data. The effect this reduction has on a systems
complexity is particularly evident in large datasets.

This paper applies geospatial join on large hyperlocal air

quality data to compare the effectiveness of two common line

simplification algorithms for performing faster geospatial joins,

those are Douglas-Peucker (DP hereafter for short) and

Visvalingam-Whyatt (VW hereafter for short) algorithms,

which are discussed in the next two subsections.

A. Visvalingam-Whyatt Algorithm

Visvalingam-Whyatt (VW), introduced in 1993 [3], works by

removing the least significant points in a given line, and treating

the remainder of the line as a new one. It does that by

considering the triangular features and recursively eliminating

the smallest triangles as they are assumed to have the least

amount of contribution. By removing the triangles with the

smallest area, the important geometric characteristics are

preserved. The VW algorithm is relatively easy to compute, and

its straightforward framework makes it an efficient algorithm.

For visualization purposes, this method is often preferred as

more significant features on the map tend to be preserved,

forming large triangles.

B. Douglas-Peucker Algorithm

Another commonly used line simplification technique is the
Douglas-Peucker (DP) algorithm [2]. Preceding the VW
algorithm, DP was introduced in 1973 and works by eliminating
points on a polygonal chain whilst preserving the original shape
of the polygon. As a result, this algorithm is particularly useful
to applications where simplification is needed without
significantly altering the appearance of the polygon and

Fig. 1 methodology overview

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

maintaining its visual integrity whilst reducing the
computational power required. The algorithm takes a tolerance
parameter that adjusts the degree of simplification, making it
easy to scale the outcomes to varying levels of detail. Several
vector line generalization algorithms are employed in the
literature, which are categorized into five groups in [15]. For
example, Reumann–Witkam routine [16], the Douglas–Peucker
(DP) algorithm [2], and an algorithm by Visvalingam and
Whyatt (VW) [3]. Global algorithms (e.g., DP) considers the
entire line while reducing the line, as opposed to other categories
which work with segments of the entire line. DP and VW are
preferred as they are more accurate for preserving the original
line’s shape as corroborated in [15]. Having said that, we
employ the DP and VW algorithms as integral parts of our
system system in this paper.

C. Data Importing and Preprocessing

For testing the different line simplification algorithms, two
publicly available georeferenced mobility datasets were chosen.
The first dataset contains information about New York City
Polygons, including the geographical boundaries for the
neighborhoods across the city, where each neighborhood is
represented by a polygon, a form of vector geospatial
representation (in the form of GeoJSON file extension). The
dataset has 310 enteries each consisting additional information
such as the neighborhood name, borough, borough code and a
unique identifier that links to more detailed resources about the
neighborhood. The second dataset used is a unique geotagged
air quality dataset collected using low-cost air-quality sensors,
consisting of 170K records, each entry includes a timestamp,
geographic coordinates, temperature, humidity and particulate
matter levels.

In this phase, a series of pre-processing steps were
performed to make sure that the geographical data was cleaned,
consistent, and suitable for further analysis and computations.
The data that was gathered in CVS and GeoJSON formats
including multiple attributes such as geographical boundaries
(polygons and point geometries, longitude, and latitude) and
environmental data (such as temperature, humidity, and pm25).

The first step was to clean the data by removing erroneous
coordinates (coordinates where the longitude and latitude are
equal to (0,0) respectively), and missing data were dealt with by
filling them. To standardize the analysis, all geographical data
was converted into a uniform coordinate reference system
(CRS), namely, EPSG 4326. This uniform CRS was used to
ensure that the accuracy of the geographical measures such as
distance and area are maintained and accurate across the dataset.

To better understand the data, feature extraction and
visualization tasks were performed, out of necessity for our line
simplification analysis. Feature extraction includes finding the
area in square meters and computing the number of vertices of
the data. Evaluating these features played a role in assessing the
efficiency of our data simplification algorithms thereafter in this
study. In Figure 2, After pre-processing the data, spatial join was
performed by joining the air quality data with the neighborhood
data and a heatmap was generated as depicted to visualize the
varying levels of air quality. The bright areas in the map indicate
areas with better air quality, given that they have a lower
concentration of particulate matters (pm10 and pm2.5)

pollutants. On the other hand, the darker areas indicate higher
concentrations of the pollutants, these areas may be closer to
major highways or areas with high vehicle emissions.

D. Simplification Algorithms

In this section, the different algorithms and frameworks used
are outlined. Two algorithms (DP and VW) were evaluated on
more than one framework.

The DP algorithm was implemented via two different
frameworks: the first algorithm is implemented using the
Shapley library provided by GeoPython, for precise geometric
manipulation with a tolerance of 0.001, and the second
algorithm is implemented using Mapshaper.org, a web-based
simplifier using a tolerance of 0.1%, for more efficient results
and less overlapping between the neighborhoods, allowing for a
comprehensive comparison of the data in terms of data
reduction and geometry preservation.

Douglas-Peucker with Shapely (hereafter DP-Shapely for
short). This approach implemented the DP algorithm which uses
a distance measure to test each single point by using the
GeoPython Shapely library to simplify the geographical data. As
mentioned in section II, the DP algorithm mainly reduces the
number of vertices in each polygon while preserving the
topology. The implementation of the function which iterates
through each feature of the GeoJSON data, takes the polygon
geometry as an input and applies the ‘simplify()’ method
provided by the Shapely library, which takes a specified
tolerance level as input; this determines how much of the
geometry will be simplified. In general, they are indirectly
proportional such that when the tolerance value increases, the
number of vertices decrease. In order to maintain the original
shape and minimize overlapping between the vertices, the
tolerance was set to 0.001. As a result, a new dataset in the
format of GeoJSON was created where each polygon contains a
lower number of vertices.

Douglas-Peucker with Mapshaper.org [4] (hereafter DP-
Mapshaper for short): A second tool was introduced to apply the
DP algorithm via Mapshaper, which was designed for efficient
map simplification. Mapshaper is a generalization web service
developed to help mapmakers simplify and smooth their vector
line work using a suite of visual-editing tools. This approach is
unique in that Mapshaper can handle large data more efficiently
than Shapley while minimizing overlapping as much as
possible, making it appropriate for extensive geographical data.
The original GeoJSON file is fed into the Mapshaper and
executes the ‘simplify()’ command with a specified tolerance,
which was set to 0.1% corresponding to a tolerance of 0.001.

Fig. 2 heatmap visualizing the varying levels of air quality, NYC USA.

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

The command regulates the complexity of the polygon geometry
in a similar manner to Shapely while simultaneously optimizing
for processing and supporting various output formats, which
makes it easier for subsequent analysis. The last step is exporting
the simplified data back into GeoJSON format for further
processing. To compare the results of the DP simplifier, the VW
simplifier using the Mapshaper tool was examined. Similar to
the previous method, this algorithm was implemented to analyze
and provide insights about the data.

Visvalingam-Whyatt with Mapshaper.org (VW-Mapshaper
hereafter for short). This simplification technique was added for
comparison and analysis purposes. The VW method applies an
area measurement by using the Mapshaper web service. This
method is different from DP as VW works by removing the
points that result in the smallest area change first, making it more
preserved in terms of data visualization. It works similarly to the
DP algorithm with the Mapshaper.org tool but by replacing the ‘simplify()’ command with ‘method=Visvalingam’.
E. Statistical Analysis

To evaluate the performance of the data simplification

algorithm against the original data, several statistical metrics

were examined after applying the data processing methods

including aggregation, normalization, and merging the original

and simplified data based on their neighborhoods. The metrics

examined were: Mean Absolute Percentage Error (MAPE),

Root Mean Square Error (RMSE), Spearman Correlation, and

Jensen-Shannon divergence (hereafter JSD for short).

a) Root Mean Square Error (RMSE): This measure is

used to calculate the average magnitude of the error between

the original and simplified data. It shows clearly how much the

simplification deviates from the original in terms of spatial

accuracy. The formula is represented in (1) Where Oi and Pi are

the original values and simplified values, respectively, and n is

the number of observations.

RMSE = �(1

�) ∑ (�� � ��)2 �� ! (1)

b) Mean Absolute Percentage Error (MAPE): MAPE is

used to express the error as a percentage of the original data,

which gives us an insight about the errors in terms of relative

size. The formula is shown in (2).

MAPE =
!""%

� ∑ $%&'(&
%&

$�� ! (2)

c) Spearman Correlation: The spearman correlation is a

statistical test to measure the strength of a monotonic

relationship. A monotonic function is a function that either

never increases or decreases as its independent variable

increases between paired data. In this case, the comparison is

computed between the original neighborhood data and the

simplified neighborhood data. It is denoted by rs and follows

the constraint below, the closer rs is to 1 the stronger the

monotonic relationship [10], such that �1 + ,- + 1.

d) Jensen-Shannon (JS) Divergence: JS is a statistical

method used to measure the similarity between two probability

distributions. It is defined in (3) where H(.) represents the

Shannon entropy of a distribution. It is important that this

metric is minimised, since a lower score indicates that the

important information between the two sets of data, that is,

original and simplified is preserved, whilst reducing the data

size.

/01(�, 3) = 4(5) � !
6 (4(�) 7 4(3)) (3)

IV. RESULTS AND DISCUSSION

For comparison purposes, the polygons representing New

York City neighborhoods in the USA were generated, and the

same diagram was generated for all implementations of the

simplification algorithms, to analyze their effectiveness.

Applying the DP simplifier with shapely and a tolerance of

0.001 produced the diagram in Figure 3.a, where some

overlapping in the boundaries of the neighborhoods is evident.

To resolve the overlapping issue encountered while using the

DP simplifier with GeoPython Shapely, the Mapshaper

framework with a tolerance of 0.1% was explored. This is due

to Mapshaper’s ability to preserve the topology and boundaries

whilst minimizing overlapping between the neighborhoods. As

a. DP-Shapely b. DP-Mapshaper

Fig. 3 Polygon diagram of NYC neighborhoods applying DP algorithm

Fig. 5 Number of Vertices vs. Tolerance vs. Average Time

Fig. 4 Number of Vertices vs. Tolerance, NYC polygons

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

a result, the model was able to ensure less overlapping in the

simplified data and the retention of boundaries between

adjacent polygons. The resulting diagram can be seen in Figure

3.b.
Lastly, the VW simplifier was applied using Mapshaper,

which shows more details with 0.1% tolerance whilst also
preserving the topology and minimizing overlapping. This is due
to the retention of boundaries between adjacent polygons
feature, which allows the map to appear to be more detailed.This
tolerance level determines how much the simplified lines can
deviate from the original lines. The overlapping between the
boundaries of the neighborhoods is a result of the tolerance
applied. For a deeper understanding of the results, the number
of vertices per neighborhood as well as their accuracies were
computed.

Figure 4 depicts a graph that compares the number of

vertices in the polygons with the data before and after

simplification. The blue line represents the original geometries

while the orange line represents the simplified geometries. It is

evident from the graph that the original polygon of the

neighborhoods has number of vertices much higher than the

simplified in which for the simplified the number of vertices

decrease with increasing tolerance, indicating a loss in detail as

the number of vertices decrease. As for the original polygon, it

remains constant with no significant changes as the tolerance

increases; this indicates that the number of vertices in the

original geometry is preserved across all tolerance levels, as

expected given that no simplification was applied to the original

data.
Additionally, figure 5 shows the computational time

required for performing the join operation, specifically a spatial
join and the number of vertices produced after line
simplification were analyzed in relation to the tolerance levels.
The straight lines represent the original data before line
simplification and the dotted line represents the data after line
simplification. Correspondingly, the red lines represent the
average time of the spatial join prior to and following the line
simplification while the blue lines represent the vertices prior to
and following line simplification using DP-Shapely.

The graph reveals that the tolerance is indirectly proportional
to the average time of the spatial join, as well as the number of
vertices after simplification; that is, as the tolerance increases,
the average time and number of vertices decrease. This result
was expected given that increasing the tolerance decreases the
number of vertices, thereby reducing the time needed to perform
the join operation. It is also evident that the average time taken
to perform the spatial join on the original and simplified data

exhibit similar behaviors as visible from the parallel trend
observed in the figure, although the average time of the original
starts very high and has a drastic decrease, this behavior could
be attributed to various factors, although it is not possible to
determine the specific cause. In addition to the simplified
models naturally having a lower number of vertices. Generally,
it appears that the number of vertices of the original data remain
constant even with increasing tolerance, which is expected given
that the original data is not subjected to any changes.

Further, to determine the optimal tolerance score for the
spatial data join, figure 6 is used to show the accuracy rate of the
join against the tolerance. The graph compares the accuracy of
spatial joins between the two sets of geographical data, where
the neighborhood and air quality data is evaluated to see how
simplification affects the joins.

The tolerance values are ranging from 0.001 and 0.010 with
an increment 0.001. The tolerance value determines how the
vertices are simplified in the original data. As evident from the
graph,the accuracy decreases with increasing tolerance,
indicating that there is a tradeoff between reducing the
complexity of the data via simplification and maintaining the
accuracy. It can also be seen from the graph that there is a
significant drop in accuracy at around 0.007 tolerance, this could
be an indication that important geographical information
necessary for the joins are being removed. This graph can also
be used to show the optimal tolerance which seems to be the
lowest at approximately 0.001. This tolerance implies that less
simplification preserves the most important geographical
information, given that with increasing tolerance, less vertices
are retained thus, resulting in simpler polygons with less
accurate information. Figure 7 compares the number of vertices
between the different simplifiers, as evident from Table I, the
original – referring to data without any line simplification, has
the highest number of vertices. Comparatively, the data with line
simplification algorithms have much lower number of vertices.
DP-Shapely was able to remove the highest number of vertices
while retaining only 1,653 vertices, followed by 1,743 and 2,031
retentions for DP Mapshaper and VW Mapshaper respectively.
While these results may indicate that DP-Shapely is the most
effective in simplifying the polygons, the graphical
representations, Figures 3, 4 and 5 revealed that shapely causes
overlap in the data. As such, Mapshaper proves to be the better
method for accuracy, as the increase in number of vertices is
very minor, but the accuracy is assumed to improve greatly as it
avoids overlapping and preserves the geometric characteristics
and topology. Table I compares the geographical area of the
data and the total number of vertices before and after
simplification. The tolerances used are the following: DP-

Fig. 6 Spatial Join Accuracy Rate vs. Tolerance

Fig. 7 Number of Vertices across the algorithms

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

Shapely simplifier with a tolerance of 0.001, DP-Map shaper
simplifier with 1% tolerance, and VW-Map shaper simplifier
with 1% tolerance were used.

The readings show that the results were similar between the
two algorithms, making them both effective. MAPE is
minimized with a low score of 0.048 and 0.049 for DP-
Mapshaper and VW-Mapshaper, respectively, suggesting a very
accurate prediction and indicating the effectiveness of the
model. The algorithms also computed promising Spearman
Correlation values of 0.88 and 0.92, respectively, VW
performing slightly better, statistically indicating that the
original and simplified data are highly correlated and
comparable, further reaffirming that the geospatial data is
preserved despite reducing the number of vertices by
approximately 94%. Further, the Jenson-Shannon Divergence
results were relatively low at 0.33 and 0.35, reiterating the
similarity between the original and simplified data – that is, the
data is sufficiently well-preserved whilst decreasing the
computational cost. The correlation and divergence metrics are
especially useful for aggregation queries, which are optimized
in this analysis. As the results are relatively comparable, the
question as to which algorithm to use depends on the
application. Generally, DP is better suited for general purpose
and adaptive simplification, where the level of detail can be
dynamically set, whereas VW is more often used for visual and
area-focused applications.

TABLE I. COMPARISON OF RESULTS

V. CONCLUSIONS AND FUTURE WORKS

This paper compares the performance of different line

simplification algorithms namely Douglas-Peucker and

Visvalingam-Whyatt. Two different tools – Shapely and Map

shaper were used to compare DP while only Map shaper was

used for the VW. It was evident from the results that both

algorithms performed in a similar manner via the Map shaper

interface, computing promising evaluation metrics. The results

of these models prove to be essential as the need for spatial joins

increases, seeing as it is computationally expensive in its full

form. This approach allows the data size to be significantly

reduced whilst preserving the geometric characteristics of the

data as well as its visual topology. In doing so, the efficiency of

the programs can be greatly improved, cutting down on

computational costs. This is particularly important for data

science aggregation tasks, including comparisons, DBSCAN

(Density Based Spatial Clustering of Applications with Noise),

clustering, and regression; allowing analysts to make more

informed, strategic decisions.

REFERENCES

[1] D. H. Douglas and T. K. Peucker, "Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,"
Cartographica: the international journal for geographic information and
geovisualization, vol. 10, no. 2, pp. 112-122, 1973.

[2] M. Visvalingam and J. D. Whyatt, "Line generalization by repeated
elimination of points," in Landmarks in Mapping: Routledge, 2017, pp.
144-155.

[3] M. Harrower and M. Bloch, "MapShaper. org: A map generalization web
service," IEEE Computer Graphics and Applications, vol. 26, no. 4, pp.
22-27, 2006.

[4] I. M. A. Jawarneh, L. Foschini, and P. Bellavista, "Polygon Simplification
for the Efficient Approximate Analytics of Georeferenced Big Data,"
Sensors, vol. 23, no. 19, p. 8178, 2023.

[5] I. M. Al Jawarneh, R. Montanari, and A. Corradi, "Cost-Effective
Approximate Aggregation Queries on Geospatial Big Data," in 2023
IEEE Globecom Workshops (GC Wkshps), 2023: IEEE, pp. 1313-1318.

[6] A. Hassan and J. Vijayaraghavan, Geospatial Data Science Quick Start
Guide: Effective techniques for performing smarter geospatial analysis
using location intelligence. Packt Publishing Ltd, 2019.

[7] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, and R.
Montanari, "SpatialSSJP: QoS-Aware Adaptive Approximate Stream-
Static Spatial Join Processor," IEEE Transactions on Parallel and
Distributed Systems, 2023.

[8] M. Armbrust et al., "Structured Streaming: A Declarative API for Real-
Time Applications in Apache Spark," presented at the Proceedings of the
2018 International Conference on Management of Data, Houston, TX,
USA, 2018.

[9] I. M. Al Jawarneh, L. Foschini, and A. Corradi, "Efficient Generation of
Approximate Region-based Geo-maps from Big Geotagged Data," in
2023 IEEE 28th International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks (CAMAD), 2023:
IEEE, pp. 93-98.

[10] I. M. Al Jawarneh, L. Foschini, and P. Bellavista, "Efficient Integration
of Heterogeneous Mobility-Pollution Big Data for Joint Analytics at Scale
with QoS Guarantees," Future Internet, vol. 15, no. 8, p. 263, 2023.

[11] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, and R.
Montanari, "Efficiently Integrating Mobility and Environment Data for
Climate Change Analytics," in 2021 IEEE 26th International Workshop
on Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD), 2021: IEEE, pp. 1-5.

[12] S. Gao et al., "Automatic urban road network extraction from massive
GPS trajectories of taxis," in Handbook of Big Geospatial Data: Springer,
2021, pp. 261-283.

[13] H. Qian and Y. Lu, "Simplifying GPS Trajectory Data with Enhanced
Spatial-Temporal Constraints," ISPRS International Journal of Geo-
Information, vol. 6, no. 11, p. 329, 2017.

[14] L. Zheng, Q. Feng, W. Liu, and X. Zhao, "Discovering trip hot routes
using large scale taxi trajectory data," in Advanced Data Mining and
Applications: 12th International Conference, ADMA 2016, Gold Coast,
QLD, Australia, December 12-15, 2016, Proceedings 12, 2016: Springer,
pp. 534-546.

[15] W. Shi and C. Cheung, "Performance evaluation of line simplification
algorithms for vector generalization," The Cartographic Journal, vol. 43,
no. 1, pp. 27-44, 2006.

[16] K. Reumann and A. Witkam, "Optimizing Curve Segmentation in
Computer Graphics. International Computing Symposium," ed:
Amsterdam, North Holland, 1974.

Metric
Algorithm

Original
DP-Shapely

DP-Map

shaper

VW-Map

shaper

Tolerance 0.001 1% 1%

Area (m2) 2536228.4 2311793.02 2792454.7 2260661.6

No. of

Vertices
32,388 1,653 1,743 2,031

RMSE - - 62.69% 65.00%

MAPE - - 0.04758 0.04853

Spearman

Correlation
- - 0.88370 0.92074

JSD - - 0.33109 0.35564

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

