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Abstract—The effectiveness of automatic speech recognition
(ASR) systems in environments with acoustic challenges directly
influences their utility in a range of voice-activated applications.
This paper focuses on an experimental analysis of the resilience of
various ASR models to acoustic disturbances — specifically white
noise, reverberation, time stretch, and pitch shift — within the
context of the Italian language, a non-English and comparatively
less-studied linguistic domain. The investigation reveals a notable
degradation in performance across the board when models are
subjected to these audio transformations. By focusing on Italian,
this research contributes valuable insights into the challenges and
opportunities in optimizing ASR technologies for languages with
lower research exposure.

Index Terms—Automatic Speech Recognition, Deep Learning

I. INTRODUCTION

Recent advancements in automatic speech recognition (ASR)
have introduced models like wav2vec 2.0 [1], Whisper [2],
and Conformer [3], along with compact models like Jasper
[4] and QuartzNet [5]. These developments have significantly
enhanced ASR efficiency and speed, which are essential for a
wide range of applications.

However, the accuracy of ASR models, especially under
acoustically challenging conditions, remains crucial. Prior
studies [6]–[8] have highlighted the importance of improving
ASR systems’ resilience to noise and other auditory distor-
tions.

This research evaluates the robustness of ASR models
against white noise, reverberation, time stretching, and pitch
shifting, specifically focusing on the Italian language. This
focus is particularly novel as it addresses a less-explored lin-
guistic domain in ASR research. By examining these models’
performance under varied acoustic disturbances, we aim to
contribute to enhancing ASR technology’s adaptability and
reliability across languages, particularly in real-world environ-
ments where such disturbances are common.

II. RELATED WORK

The field of automatic speech recognition (ASR) has seen sig-
nificant progress, particularly with the introduction of models
like Whisper [2], Conformer [3], and QuartzNet [5], have been
crucial.

The native multilingual capabilities of models like Whisper
[2], as opposed to the fine-tuning methods [9] for languages
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like Italian, reflect different strategies for adapting ASR tech-
nologies to various languages.

While the Whisper model demonstrated resilience in basic
noise environments [2], [10], its performance under extensive
acoustic variations remains less explored. Conformer’s inte-
gration into denoising ASR pipelines [11], [12] showcases in-
novative approaches to improving speech recognition accuracy
amidst noise. The development of noisy datasets [13] and noise
augmentation techniques [14] have been essential in enhanc-
ing the noise resilience of ASR models. Nonetheless, their
applicability to specific models has not been fully explored.

Research on noise removal [6], [15] and speech derever-
beration [16], [17] offer various solutions to combat auditory
distortions.

QuartzNet, when fine-tuned with noise augmentations,
shows notable improvements in handling noisy samples while
maintaining performance on clean data [18].

Research on pitch manipulation has been conducted to
reduce the performance gap between male and female voices
[19], pointing to a significant area for ongoing study.

In summary, the field of ASR has made significant progress
with the introduction and refinement of the above models.
There are still significant areas for future research, particularly
in investigating novel noise conditions and atypical audio
transformations, as well as extending support to a broader
range of languages. These areas offer promising paths for
future studies.

III. METHODOLOGY

This study assesses Whisper, QuartzNet, and Conformer ASR
models’ robustness to audio disturbances focusing on the
Italian language. We conduct transformations, to mimic chal-
lenges encountered in online communications and real-world
environments, to evaluate their performance and identify en-
hancement areas.

A. Models

The Whisper, QuartzNet, and Conformer models were selected
due to their architectural diversity and the availability of
versions specifically designed for the Italian language. For
experiments we utilize the Whisper model from [20] and
Italian QuartzNet, and Conformer models from [21]

a) Whisper Models: We employ Whisper base, medium,
and large-v3 models [2], utilizing their multilingual capabil-
ities by specifying Italian as the inference language. These
models are designed to be multilingual, supporting optional
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language selection at inference. Compared to other tested
models, the Whisper variants are notably larger, with the
base, medium, and large-v3 models containing 74 million, 769
million, and 1550 million parameters, respectively.

b) QuartzNet 15x5: QuartzNet [5] 15x5, with its deep
79-layer architecture and 18.9 million parameters, originally
pretrained on English datasets such as LibriSpeech [22], Fisher
Corpus [23], Switchboard-1 [24], WSJ-0, and WSJ-1 [25],
with following fine-tuning for Italian with Common Voice 6.0
[26] dataset.

c) Conformer CTC Large It: Conformer CTC Large,
leveraging around 120 million parameters, employs the Con-
nectionist Temporal Classification(CTC) loss function [27].
Trained from scratch on a composite dataset of approximately
500 hours of Italian speech, including Common Voice 11.0
[26], Multilingual LibriSpeech [28], and VoxPopuli [29], it
utilizes a SentencePiece tokenizer [30] with a vocabulary of
128 tokens.

d) Conformer-Transducer Large It: This model employs
the RNNT/Transducer loss/decoder [31] for ASR. It is trained
on the same Italian speech dataset as the Conformer CTC
Large but uses a tokenizer with a vocabulary size of 1024.

e) FastConformer Hybrid Transducer-CTC Large It:
FastConformer [32] Hybrid Transducer-CTC, combining the
strengths of both CTC and Transducer models. It was trained
on the same speech data as conformer models. This model’s
architecture is optimized with 8x depthwise-separable con-
volutional downsampling, and it employs a tokenizer with a
vocabulary of 512.

B. Dataset

To evaluate the efficiency of the ASR models in environ-
ments with audio disturbances, we utilized the Italian test
subset of the Common Voice 13.0 dataset [26]. The test
subset comprises 15,096 recorded sentences and 3,753 unique
participants. This dataset was selected due to its compre-
hensive representation of the Italian language, encompassing
a wide array of accents, age groups, and speech contexts
encountered in real-world scenarios. The diversity of this
dataset ensures that the models are tested on a varied set of
speech samples, enhancing the relevance of the evaluation to
practical applications.

C. Audio Transformations

Evaluating ASR models’ performance in real-world-like con-
ditions necessitates applying specific audio transformations.
These are selected to replicate common auditory challenges.
The transformations include:

• White Noise: A signal with uniform intensity across
various frequencies, formulated as

n(t) = α · rand(t), (1)

where α represents the amplitude, and rand(t) is a
function generating uniform random numbers.

• Time Stretch: Alters the length of an audio clip without
changing its pitch, described by

y(t) = x(a · t), (2)

a being the stretch factor. This equation allows for
the adjustment of the audio’s playback speed without
affecting the sound’s pitch or clarity. Thus, it leads to
an alteration in the duration of the audio

• Pitch Shift: Modifies an audio signal’s pitch using
Fourier Transform techniques, expressed as

y(t) = F−1{F{x(t)} · ej2π∆ft}, (3)

with ∆f indicating the frequency shift. The experi-
ment adjusts n steps, which correlates to ∆f through
∆f = n steps× f0

12 , f0 being the base frequency before
modification. An adjustment by one n steps equates to
a semitone pitch change.

• Reverberation: Mimics the echo effects in audio, repre-
sented as

y(t) = x(t) + α · x(t−∆t), (4)

where α is the echo decay rate and ∆t the delay time.
These audio transformations were selected to challenge the

audio processing capabilities of the ASR models, ensuring
that the sentences remain comprehensible to human listeners
despite the introduced noise or distortion.

IV. RESULTS

To evaluate the performance of the speech recognition systems
in our study, we use the Word Error Rate (WER) metric. The
WER is computed as:

WER =
S +D + I

N
, (5)

where S represents the number of substitutions, D the number
of deletions, and I the number of insertions required to align
the system’s transcription with the reference text. The total
number of words in the reference text is denoted by N . WER
serves as a measure of transcription accuracy, with lower
values indicating higher accuracy and better performance.

For text normalization, we remove punctuation and other
non-alphanumeric symbols, and convert all text to lowercase.

We analyzed Whisper, QuartzNet, and Conformer models
under acoustic disturbances like white noise, time stretch, pitch
shift and reverberation to explore their robustness in the Italian
context.

TABLE I
WER FOR ASR MODELS IN NO NOISE SCENARIO

Model WER
Whisper Base 0.37
Whisper Medium 0.10
Whisper Large-v3 0.06
QuartzNet 0.17
Conformer-CTC Large 0.07
Conformer-Transducer Large 0.05
FastConformer-Hybrid CTC/Transducer 0.06
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The results in Table I indicate that the Whisper Large model
and Conformer variants outshine others, with QuartzNet’s
lower accuracy reflecting its simpler architecture. The Whisper
Base model, despite its smaller size within the advanced
Whisper series, records the highest WER, underscoring its lim-
itations as a compact transformer model in achieving optimal
accuracy. This result emphasizes the trade-off between model
complexity and performance, especially in environments with-
out noise.

In the presentation of our results, a color map has been
used to visually delineate the WER performance across audio
transformations, with the color coding applied independently
to each column. This color scale transitions from green to red
to represent a gradation of WER values from the lowest to the
highest respectively. To facilitate easier comparison, reference
WER values for the no-noise or no-transformation scenario are
clearly displayed in the first column of each table, separated
by a bold line for clear distinction and quick reference. The
transformation levels in each table are arranged from left to
right, progressing from least to most severe

Notably, Whisper Large v3 and Conformer Transducer
Large exhibit superior resilience in significant white noise
augmented conditions (Table II). Important to highlight that
although QuartzNet demonstrates a higher WER in noise-
free conditions, its performance exhibits a relatively modest
degradation rate when compared to other models as noise
levels increase. At the noise level of 0.03, there is a significant
reduction in quality, revealing a clear divergence from the
human ability to discern and understand the audio content in
analogous situations [33].
Table III shows Whisper models, especially Large v3, superior
performance in handling reverberated audio. Whisper Medium
also excels in its effective handling of reverberation, outper-
forming other models, even those that perform better in clear
audio conditions. Remarkably, across all tested reverberation
times, we observe a nearly uniform degradation in model
performance, suggesting these ASR systems are sensitive to
the presence of reverberation rather than its intensity.

While pitch alterations do not significantly impact a per-
son’s comprehension of audio, such manipulations across all
observed levels lead to a noticeable, relatively consistent
decline in ASR model performance. Among the tested models,
the Whisper Large v3 and the Conformer Transducer Large
demonstrate the strongest resilience to pitch changes Table IV.
However, it is particularly noteworthy that the Conformer
model with CTC loss exhibits a more significant degradation
in performance relative to its Transducer variant.
At reduced time stretch, there’s a universal decline in the
performance across all models Table V. However, the Whisper
models, particularly the smaller variants, exhibit an extreme
version of this drop, prone to generating repetitive phrases
in their outputs. This tendency, known as ”hallucination,” is
widely observed in sequence generation models, impacting
both ASR [34] and broader language generation [35], leading
to a significantly inflated WER. Interestingly, even at a stretch
rate of 0.7 — where humans find the audio completely intel-

ligible [36] — there’s still a noticeable decline in recognition
accuracy for these models.

V. CONCLUSION

This study’s comparison of Whisper, QuartzNet, and Con-
former ASR models against acoustic disturbances such as
white noise, reverberation, time stretch, and pitch shift in the
context of Italian illustrates each model’s unique response to
different audio challenges. The results highlight the strengths
and weaknesses of each model, offering valuable insights
for future improvements in ASR robustness. By focusing on
Italian, this research provides important insights for optimizing
speech recognition technologies across a broader range of
languages, guiding efforts toward creating more universally
effective and reliable ASR systems that can maintain high
accuracy across different linguistic and acoustic environments.

Future work can consider expanding this analysis to a wider
range of languages to assess whether the findings hold across
different linguistic contexts, as well as investigating advanced
noise reduction techniques and developing methodologies to
create more robust ASR models. These efforts will further
enhance the resilience and applicability of ASR systems across
diverse linguistic and acoustic environments.
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