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Abstract—Efforts directed towards promoting Open 

Government Data (OGD) have gained significant traction across 

various governmental tiers since the mid-2000s. As more 

datasets are published on OGD portals, finding specific data 

becomes harder, leading to information overload and so-called 

“dark data”. Complete and accurate documentation of datasets, 

including association of proper tags with datasets is key to 

improving dataset findability and accessibility. Analysis 

conducted on the Estonian Open Data Portal revealed that 11% 

datasets have no associated tags, while 26% had only one tag 

assigned to them, which underscores challenges in data 

findability and accessibility within the portal, which, according 

to the recent Open Data Maturity Report, is considered trend-

setter. The aim of this study is to propose an automated solution 

to tagging datasets to improve data findability on OGD portals. 

This paper presents TAGIFY – a prototype of tagging interface 

that employs large language models (LLM) such as GPT-3.5-

turbo and GPT-4 to automate dataset tagging, generating tags 

for datasets in English and Estonian, thereby augmenting 

metadata preparation by data publishers and improving data 

findability on OGD portals by data users. The developed 

solution was evaluated by users and their feedback was collected 

to define an agenda for future prototype improvements. 
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I. INTRODUCTION

In recent times, governments around the world have 
developed Open Government Data (OGD) initiatives, 
merging the principles of open government and open data [1]. 
Governments around the globe publish governmental data on 
OGD portals that become available for a wide audience of 
users. Yet, users face difficulties in finding and discovering 
datasets related to their goals due to lack of sufficient 
descriptive metadata in open data catalogues [2]. As an 
increasing number of datasets become accessible, the 
challenge of information overload arises due to the difficulty 
in locating specific information [3], often resulting in “dark 
data”. A recommended approach to enhance the 
discoverability and shareability of published datasets involves 
employing expressive descriptors, such as tags, effectively 
[3]. Descriptors constitute a form of metadata, providing 
details about the content of a resource to assist in its discovery 
or comprehension [4]. Incomplete or inaccurate metadata 
inhibits consumers from discovering relevant data for their 
requirements, leading to the necessity of spending significant 
time manually searching through portals and the data itself to 
identify relevant datasets [3, 5]. 

While tags may seem to be a trivial searching facet, the 
current practice shows that both their presence and relevance 
to the actual dataset tend to be a challenge for OGD portals, 
including the Estonian Open Data Portal, which, according to 
various open data rankings, is recognized among “trend-
setters” [20]. Through an analysis of the Estonian Open Data 

Portal conducted as part of this study (Section II.C), 
significant shortcomings were discovered in data tagging 
practices, i.e., among 1787 datasets published (as of April 
2024), 11% have no associated tags, while for 26% datasets 
have only one tag assigned to them. These findings underscore 
challenges in data findability and accessibility within the 
portal. 

The aim of this study is to address the challenges 
associated with dataset findability and metadata quality by 
developing a prototype that automates the tagging process by 
employing a large language model (LLM). The emergence of 
LLMs as a subset of Generative AI offers a compelling 
alternative, utilizing advanced natural language understanding 
to generate meaningful tags. The development of such a tool 
holds significant promise for both data publishers and 
consumers. Automating the tagging process for data 
publishers mitigates the risk of datasets lacking tags, a 
common occurrence on portals where their inclusion isn't 
mandatory, i.e., the design of the portal does not suggest that 
they are mandatory. Moreover, this automation minimises the 
association of datasets with incomplete or inaccurate tags. 
Consequently, it enhances the findability and accessibility of 
datasets, facilitating streamlined access for users. By 
streamlining the metadata enrichment process, publishers can 
allocate resources more efficiently and accelerate the 
dissemination of datasets associated with high-quality tags. 

As such, this study proposes TAGIFY – LLM-powered 
TAGging Interface to automate the tagging process for 
datasets formatted in CSV as one of the most popular open 
data formats [6, 7]. TAGIFY is developed as a web service, 
designed to optimise interoperability and integration with 
different platforms and systems. Additionally, a front-end 
application is developed to conduct its usability testing with 
actual users. The prototype is evaluated with over 20 users, 
collecting the feedback on its efficiency, effectiveness, 
evaluating the relevancy of generated tags, along with user-
friendliness and usefulness of the prototype, as well as 
collecting the feedback for its further improvement. 

The paper is organised as follows: Section 2 defines the 
core concepts related to the study and explains data findability 
issues faced by users of open data portals. Section 3 introduces 
the implementations strategy of this study. Section 4 presents 
the implementation of the prototype. Section 5 presents 
evaluation of the prototype. Section 6 and 7 presents the 
discussion, acknowledge limitations, and outlines future 
improvements of the prototype. 

II. BACKGROUND

This section defines the core concepts used in the paper, 
including OGD and FAIR principles with further 
determination of the problem this study attempts to resolve. 
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A. Open Government Data vs FAIR data 

Initiatives aimed at fostering OGD, including the 
establishment of OGD portals, have seen widespread adoption 
since the mid-2000s across governmental levels [8]. The 
Organisation for Economic Co-operation and Development 
(OECD) defines OGD as both a philosophy and a set of 
policies aimed at fostering transparency, accountability, and 
value generation by making government data accessible to the 
public [9]. To be recognized as OGD these data must be also 
compliant with principles set by the Open Data Charter, 
according to which they must be open by default, timely and 
comprehensive, accessible and usable, comparable and 
interoperable, suitable for improved governance and citizen 
engagement, as well as for inclusive development and 
innovation [10]. By sharing data that public entities generate 
in substantial amounts, these data are seen to enhance 
transparency and accountability to citizens, while their use and 
reuse promote the creation of businesses and innovative 
citizen-centric services [9]. This movement has been joined by 
most countries globally. 

Another concept closely related to OGD that aims to 
maximise the value and usability of data, albeit within another 
context, is FAIR. FAIR [12] is the set of guiding principles 
that enable both machines and humans to find, access, 
interoperate and re-use data and metadata [13,14]. FAIR 
stands for Findability, Accessibility, Interoperability and 
Reusability. Findability is the principle, according to which, 
both humans and computers should encounter minimal 
difficulty in locating metadata and data resources, where 
machine-readable metadata plays a crucial role in facilitating 
automated discovery of datasets and services, thus 
constituting a fundamental aspect of the FAIRification 
process. Accessibility requires that after locating the desired 
data, the user must ascertain the methods for accessing them, 
which may involve considerations such as authentication and 
authorization processes. Interoperability sets prerequisites for 
data to be integrated with other datasets, making them capable 
of interoperating with various applications or workflows for 
purposes such as analysis, storage, and processing. 
Reusability, being the primary goal of FAIR, dictates the need 
to enhance the efficiency of data reuse. This entails ensuring 
that metadata and data are well-described so they can be 
reused in different settings [14]. 

As such, OGD initiatives and FAIR principles share 
common goals of maximising the value and usability of data 
by promoting principles of openness, accessibility, 
interoperability, and reusability. However, although both are 
related concepts, they serve slightly different purposes, where 
OGD initiatives focus specifically on making government 
data open and accessible to the public, while FAIR principles 
provide a broader framework for ensuring that data, regardless 
of its source, is findable, accessible, interoperable, and 
reusable (FAIR). As such, data can be compliant with the open 
(government) data principles, but not necessarily compliant 
with FAIR principles and vice versa, FAIR data is not 
necessarily open (government) data principles-compliant, 
whereas the greatest result is achieved, when both sets of 
principles are fulfilled [15,42]. 

B. Data Findability Issues 

Data published on (open) data portals is subject for search 
through several approaches, namely, text search that allows 
dataset search by their title, and faceted search that allows 
datasets search by facets such as publisher, file format, 

spatial/geographical coverage, time period-, keyword- and 
tag-based, with keyword- and tag-based search being 
prevalent [1,16]. While some facets used for dataset search 
can be automatically retrieved from the data associated with 
the publisher or the dataset, e.g., dataset format, some facets, 
such as spatial coverage and tags, are expected to be provided 
by the data publisher, where the quality of tags (completeness, 
accuracy etc.), depend directly on the data provided by 
publishers. These tags being thought of as “expressive 
descriptors” [3] play a crucial role in facilitating efficient 
navigation through data portals [2, 3]. By associating datasets 
with relevant tags, users can locate datasets relating to specific 
topics of their interest [2, 3].  

Entering tags manually is slow and prone to human errors, 
such as tags are not always being accurate or relevant to the 
actual dataset [3, 17]. Additionally, if the portal's design 
doesn't enforce mandatory tagging, publishers may overlook 
tagging entirely due to its time-consuming nature, which is 
one of barriers towards data opening [20]. Inadequate 
metadata, including descriptions or tags, renders both manual 
and automated searches ineffective in locating the dataset, 
thus making the dataset non-findable, inaccessible, 
interoperable, and consequently – non-re-usable [18,42]. 

While tags may seem to be a trivial facet, the current 
practice shows that both their presence and relevance to the 
actual dataset tend to be a challenge for OGD portals, 
including the Estonian Open Data Portal, as found out in 
conversation with Estonian Open Data Portal representatives, 
regardless of the fact that, according to various open data 
rankings, is recognized among “trend-setters” [20]. To this 
end, to assess the relevance of the topic of this study and 
Estonian open data as a domain of application, an analysis of 
datasets available on the Estonian Open Data Portal was 
conducted with the aim to examine the relevance of the issue 
in question, i.e., lack of or insufficient quality of tags 
associated with published datasets on Estonian Open Data 
Portal.  

C. Analysis of datasets tags in Estonian Open Data Portal 

To analyse the number of tags associated with each dataset 
on the portal as defined by data publishers, a Python scraping 
script was developed (see Fig. 1), the code of which is 
available in a Github repository - 
https://github.com/kevinkliimask/gpt-tagger. The script 
operates as follows: 

• list of all datasets on the portal is retrieved using the 
get_datasets_list() function, which iterates over each 
dataset. get_datasets_list() fetches datasets from the 
API endpoint https://avaandmed.eesti.ee/api/datasets;  

• for each dataset, information is retrieved using the 
get_dataset(uuid) function, where the parameter uuid 
is the dataset's unique identifier. It fetches the detailed 
information from the API endpoint 
https://avaandmed.eesti.ee/api/datasets/{uuid}; 

• the length of the datasets’s tag/keywords field is 
determined. The count of tags for each dataset is then 
incremented in the counts dictionary; 

• once all the retrieved datasets are processed, the 
dictionary containing counts for each number of tags is 
printed out. 
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Fig. 1. Estonian open data portal scraping script 

The analysis performed in accordance with this procedure, 
uncovered negative trends in datasets tagging practice, 
thereby confirming the relevance of the study objective. Out 
of the 1787 datasets published (as of 23.04.24), 190 datasets 
(11%) lacked any associated tags, while 457 (26%) had only 
one tag assigned to them. This infringes the principles of 
FAIR, i.e., if a dataset is lacking relevant metadata such as 
tags, it will be more difficult for interested parties to find it 
(infringes findability) and to integrate it with other datasets 
(infringes interoperability) [14]. As a result, lack of 
keywords/tags will make the dataset less likely to be used, 
which infringes reusability [14]. This indicates potential areas 
for improvement in dataset tagging within the portal through 
augmentation of this process, which is a central objective of 
this study. As advancements in artificial intelligence 
technologies continue, they can be harnessed to enhance the 
discoverability of data through automated tagging of datasets. 
Moreover, automation elements are inherent to the FAIR 
vision [19]. 

III. IMPLEMENTATION STRATEGY AND TECHNOLOGICAL 

FRAMEWORK 

The objective of the study is achieved by automating 
dataset tagging, which, in turn, is achieved by employing a 
LLM that powers TAGIFY – a prototype of TAGging 
Interface. LLM is appropriate for this purpose, as it was found 
to be useful for predicting tags from partial content of a dataset 
[22]. As such, the following steps outline the process of 
automatically tagging a dataset:  

1. the LLM gets a system prompt describing to it which 
data it will receive, which task it has to do and how its 
response should be formatted. A system prompt is a 
message that can be used to specify the persona used 
by the model in its replies [23]. Instructions to the 
LLM are provided in English; 

2. then, the LLM is provided with the first rows of a 
dataset, including the dataset’s header row. The 
number of rows provided to the LLM is 10. 
Experimentation has shown that this number of rows 
is one of the lowest that still allows the LLM to 
generate relevant tags. Moreover, every additional 
row provided for analysis would increase the 

computational resources required, thus making the 
process more expensive. Furthermore, this number of 
rows also fits inside the input token limit of the LLM, 
which determines the maximum length of the input 
string that the LLM can accept; 

3. after processing the input, the LLM outputs a list of 
relevant tags. The tags are in English. The number of 
tags to output can be chosen by the user, of which the 
LLM is informed through the initial system prompt; 

4. finally, in addition to the English tags generated by 
LLM at step 3, translation of the generated tags in 
Estonian, as the language of a portal with which it will 
be tested and to which it is planned to integrate it to, 
is returned to the user. In other words, translations do 
not originate from the LLM, instead, the English tags 
generated by the LLM are translated separately by 
using a machine translation service’s API. 

A. Interfacing with the LLM 

Communication with the LLM is achieved through a 
RESTful web service, which handles interfacing with the 
LLM’s API. A RESTful web service is a web application that 
adheres to REST standards [24]. Web services enable various 
organisations or applications from diverse origins to interact 
without the necessity of exchanging sensitive data or IT 
infrastructure [25]. Developing the project as a web service 
has the benefit of not limiting the project to the Estonian Open 
Data Portal or OGD portals in general, thereby making it 
environment-agnostic, which will make it convenient to 
integrate the tagging service with other products. 

Additionally, a basic graphical user interface (GUI) is 
developed to interface with the web service. This is done to 
allow for a more streamlined and user-friendly usability 
testing (Section V). To facilitate usability testing over 
distance, the application is deployed to the cloud. By 
implementing this approach, users will be spared the need to 
set up the application locally, thus alleviating the associated 
inconvenience. Furthermore, it ensures that sensitive API keys 
remain protected and do not need to be shared with users 
during the testing phase. 

B. Technology Choices 

This section presents technological choices made to 
develop an automated tagging service, with the reference to 
both LLM, web service framework, GUI framework, 
translation service and cloud provider. 

1) Large Language Model: Since the prototype under 

development is LLM-powered, the first technological choice 

concerned which LLM to use. The factors that determined the 

choice of LLM were performance, cost and ease of 

implementation. Several benchmarks have been developed to 

evaluate the performance of a LLM, such as HELM (Holistic 

Evaluation of Language Models), which is a research 

benchmark developed by the Stanford CRFM (Center for 

Research on Foundation Models) to assess performance 

across a variety of prediction and generation scenarios, Open 

LLM leaderboard by HuggingFace, which is a leaderboard 

for open source LLM evaluation across 4 benchmarks - 

MMLU, TruthfulQA, HellaSwag and AI2 reasoning, and 

Chatbot Arena by LMSys, which is a benchmark utilising an 

Elo-derived ranking system, aggregated over pairwise battles 

[26]. However, there is no widely used benchmark for 
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evaluating performance of LLMs as data annotators [26]. To 

this end, we referred to a technical report by Refuel [26] to 

find a LLM with the best trade-off between label quality and 

cost. The report evaluated the performance of 6 LLMs, 

namely Text-davinci-003, GPT-3.5-turbo, GPT-4, Claude-

v1, FLAN-T5-XXL, PaLM-2 for labelling datasets. The 

report identified that the top-3 LLMs with the best trade-off 

between label quality and cost are FLAN-T5-XXL, PaLM-2 

and GPT-3.5-turbo, which were further considered for the 

purpose of this study. An additional investigation of the three 

LLMs revealed that FLAN-T5-XXL requires self-hosting, 

which increases the complexity of developing the solution. 

PaLM-2 and GPT-3.5-turbo offer a paid API, which is easier 

to implement than a self-hosted LLM. As the performance of 

the 2 models is similar, where GPT-3.5-turbo generates better 

quality labels compared to PaLM-2 in 5 out of 10 datasets, 

while the cost per label of PaLM-2 is ~70% higher [21], the 

choice to use GPT-3.5-turbo was made. 
In addition, during development, the decision to include 

GPT-4 as an additional option was made, incl. to better 
evaluate GPT-3.5-turbo. 

2) Web Service: A RESTful web framework was used to 

develop a HTTP-based API for accessing the web service. 

The choice of framework was FastAPI - a “web framework 

for building APIs with Python 3.8+ based on standard 

Python type hints” [27], as according to independent 

benchmarks by TechEmpower, FastAPI is considered as one 

of the fastest Python frameworks available, only below 

Starlette and Uvicorn [28]. FastAPI is built upon Starlette, 

which itself is built upon Uvicorn, which explains the 

differences in performance as this hierarchical architecture 

inherently introduces additional layers of abstraction, 

resulting in increased overhead [28]. But as an added benefit, 

FastAPI provides more features on top of Starlette, such as 

data validation and serialisation that are essential to building 

APIs [28]. By using a higher-level framework such as 

FastAPI, development time is saved and similar performance 

to a lower-level framework, such as Starlette, can be achieved 

as features missing in Starlette would have to be developed 

manually [28]. In addition, OpenAI (the company that offers 

the GPT-3.5-turbo and GPT-4 models) provides official 

Python bindings for using their models [29], which makes 

using a Python-based framework convenient. 

3) Graphical User Interface: When making a decision 

about a graphical user interface, a choice in favour of one of 

two options should be made, namely a desktop application or 

a web application. A front-end web application as the 

graphical user interface was chosen to facilitate a more 

seamless user testing experience. The decision was 

influenced by several factors. Notably, web applications offer 

the advantage of immediate accessibility without the need for 

installation, ensuring users can swiftly engage with the 

application across different devices and operating systems 

[30]. While it is acknowledged that web applications rely on 

an internet connection, which could be perceived as a 

limitation [30], usage of the LLM requires an Internet 

connection regardless. Therefore, this potential drawback 

becomes irrelevant in the context of this study. 

Node.js and React stand as two of the most used front-end 
web frameworks globally [31]. Node.js is an open-source 
JavaScript runtime environment that facilitates the 
development of servers and web applications [32]. 
Conversely, React is described as a “library for web and 
native user interfaces” [33]. Given that Node.js is 
predominantly tailored towards API creation, while React is 
renowned for its prowess in creating user interfaces [34], the 
decision to use React was made due to its better alignment 
with the project’s requirements. 

4) Machine Translation Service: For this project, the 

criteria for choosing a machine translation service was that it 

must be accurate and have an accessible API. According to 

research conducted by Intento [35], DeepL emerged as the 

top-performing neural machine translation service. DeepL 

offers a free, although limited, access plan to access their 

API. Additionally, the existence of an official Python library 

maintained by DeepL facilitates its convenient integration 

into the application. Considering these factors, the decision 

to use DeepL as the project’s machine translation service was 

made. Although Google Translate was initially considered 

during the project's early stages, a comparative analysis 

revealed that DeepL consistently delivered more accurate 

translations. This performance disparity ultimately solidified 

DeepL as the preferred choice for the project. 

5) Cloud Provider: When selecting a cloud provider, the 

primary criteria were cost-effectiveness and ease of 

application deployment. For this project Vercel was chosen. 

Vercel is a cloud-based platform specifically tailored for 

hosting static sites and serverless functions, offering 

developers a streamlined process in developing and 

launching web projects [37]. Vercel offers the ability to run 

back-end code as serverless functions [37]. A serverless 

function embodies business logic that operates without 

retaining data (stateless) and has a temporary lifespan, being 

created and then terminated [38]. These functions persist for 

short durations, mere seconds, and are intended to be 

triggered by a specific condition, such as an user making a 

request. Given that the web service does not need to retain 

data and only needs to run upon a request, the utilisation of 

serverless functions was deemed aligned with the project. In 

addition, Vercel offers a free tier and its straightforward 

deployment process further solidified its suitability. 

IV. IMPLEMENTATION  

In this section, implementation of the prototype back-end 
is presented, with subsequent presentation of the front-end. 
Finally, the process of hosting the application is presented. 

A. Back-end 

The back end of the developed prototype consists of 3 
main modules: (1) API endpoint, (2) OpenAI service and (3) 
translator service: 

• API endpoint accepts requests and validates received 
data from the user, which is expected to be a .csv file. 
The data consists of the first 10 rows of a to-be tagged 
dataset, including its header row; 

• OpenAI service handles interfacing with OpenAI 
API. It creates a system prompt, appends data 
received from the API endpoint to a user prompt and 
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sends both messages to the LLM. It, in turn, receives 
a response from the LLM with tags (generated by the 
LLM in English); 

• Translator service handles interfacing with DeepL 
API. It takes tags received from OpenAI service and 
translates them to another language, which within the 
context of the study is Estonian; 

• Config module handles loading environment 
variables into the application. The necessary 
environment variables for the back-end application to 
function are front-end url, OpenAI API key and 
DeepL API key. 

In addition, the back-end project contains a requirements 
file for required Python packages and a Vercel configuration 
file for the prototype application deployment purposes. The 
required Python packages for the project are fastapi, pydantic, 
pydantic-settings, python-multipart, uvicorn, openai, deepl 
and all dependencies of the preceding packages. All parts of 
the developed prototype are available in a Github repository - 
https://github.com/kevinkliimask/gpt-tagger. In subsequent 
subsections each module is presented in more detail. 

1) API Endpoint: The API endpoint accepts data sent via 

HTTP POST method. Furthermore, the endpoint is mapped to 

the “/” route, also known as the root route. As there are no 

other endpoints in the application, it is sufficient to accept 

requests only on the root route. 
Received data is validated to prevent unexpected 

behaviours in the application. The API endpoint accepts a 
body consisting of a matrix, where the matrix represents data 
from a dataset. In addition, the endpoint accepts count and 
model as query parameters from the user. These determine 
how many tags the LLM should generate and which LLM 
model should be used, respectively. The default values for 
these parameters are 5 tags and GPT-3.5-turbo model. The 
validation logic sets the following rules for the received data: 

• length of data in the request body, which represents 
the number of rows of a dataset, must be a maximum 
of 10 lines; 

• count should be in the range of 3 to 10; 

• model should be either GPT-3.5-turbo or GPT-4. 

If any of the validations fail, a HTTP exception is returned 
as a response shown to the user, specifying the nature of the 
error (see Fig. 2). 

 

Fig. 2. API endpoint and data validation logic. 

2) OpenAI Service: The OpenAI service defines a 

function handle_tagging that uses OpenAI API to generate 

tags for a dataset. Communication with OpenAI API is 

handled by OpenAI Python library. The function takes a list 

of records from a dataset, the number of tags to generate, and 

the model to use as input parameters, all provided by the user. 

The function builds messages to send to the OpenAI API, 

formats the data into a user message, sends the messages to 

the API, retrieves the generated tags, splits them into English 

tags, and then translates them into Estonian using translator 

service. Finally, it returns a dictionary containing both 

English and Estonian tags (see Fig. 3). 

 

Fig. 3. OpenAI service logic. 

3) Translator Service: To ensure tags are generated in a 

language other than English, such as Estonian, as is the case 

for this study, translator service is used. The service defines 

a function translate_text that uses DeepL API to translate tags 

originally generated by the LLM. Interfacing with DeepL 

API is handled by the DeepL Python package. The function 

accepts a list of tags, source language and destination 

language as input parameters, which in this case are English 

and Estonian, respectively. The function translates every 

string in the input list and returns the translated strings as a 

list (see Fig. 4). 

 

Fig. 4. Translator service logic. 

4) Config module: The config module defines a Settings 

class that inherits from BaseSettings provided by Pydantic  - 

a library for data validation and settings management. It 

specifies the environment variables required for the 

application, namely frontend_url, chatgpt_api_key, and 

deepl_auth_key. Then, it creates an instance of the Settings 

class to load the values of these environment variables (see 

Fig. 5). This approach ensures that the application's settings 

are correctly loaded and validated from the environment. 

Additionally, this setup enables anybody to run the 

application and use their own environment variables 

seamlessly. 

  

Fig. 5. Config module. 
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B. Front-end 

The front-end architecture is centred around a single React 
component named App, functioning as the primary entry point 
for the application. 

1) Dependencies: The application's required packages 

are defined in a package.json file. For a React app to operate, 

the main dependencies are react, react-dom and react-scripts. 

In addition, the developed React application also makes use 

of the react-drag-drop-files package to handle file uploads 

through drag-and-drop functionality. When starting the app, 

the environment variable REACT_APP_BACKEND_URL 

must be defined to specify the backend server’s URL. 

2) State Management: The useState hook from React is 

used to manage component state. The App component utilises 

the useState hook to manage states of tags, 

selectedNumberOfTags, selectedModel, error, and isLoading 

(see Fig. 6). These states are essential for tracking the 

uploaded file, selected parameters, error messages, and 

loading status. 

 

Fig. 6. App state variables. 

3) File Upload and Tag Generation: The handleChange 

function is invoked upon uploading a file. It utilises the 

readCsv utility function to extract data from the uploaded file. 

The readCsv utility function parses the CSV file uploaded by 

the user, preparing the data for transmission to the backend. 

This function accepts a single parameter file, representing the 

uploaded CSV file, and returns a Promise resolving to an 

array containing the first 10 rows of the parsed CSV file data 

(see Fig. 7). Parsing CSV data in the front-end offers the 

advantage of bypassing the need to transfer large files to the 

back-end for processing. Consequently, this approach 

eliminates the need for a size limit on file uploads, with the 

maximum size being solely dictated by the browser, e.g., 

4GB limit in Google Chrome. 

 

Fig. 7. readCsv utility function. 

Upon successful CSV file reading, the postFile function 
sends the parsed data along with selected parameters 
(selectedNumberOfTags and selectedModel) to the server for 
tag generation. The postFile function handles the transmission 
of data to the backend server for tag generation. It accepts the 
following parameters: 

• data, which represents the first 10 rows of the 
uploaded CSV; 

• numberOfTags, which is the number of tags the user 
has chosen to be generated by the LLM; 

• model, which is the LLM that the user has chosen to 
be used for tag generation. 

The postFile function constructs the backend URL using 
the provided environment variable 
REACT_APP_BACKEND_URL, appending query parameters 
for count (number of tags) and model. It then performs a 
POST request to the constructed URL using the JavaScript 
fetch API, which returns a Promise. Finally, the Promise is 
resolved and generated tags are extracted from the JSON 
response (see Fig. 8). The generated tags are then stored in the 
component state (tags), and any errors during the process are 
captured and displayed. 

 

Fig. 8. postFile function. 

4) User Interface: The handleChange function is invoked 

upon uploading a file. It utilises the readCsv utility function 

to extract data from the uploaded file. The readCsv utility 

function parses the CSV file uploaded by the user, preparing 

the data for transmission to the backend. This function 

accepts a single parameter file, representing the uploaded 

CSV file, and returns a Promise resolving to an array 

containing the first 10 rows of the parsed CSV file data. 
The user interface consists of a card layout containing the 

application title, parameter selection dropdowns, file 
uploader, and sections for displaying generated tags, loading 
status, and error messages. Dropdown menus are provided for 
selecting the number of tags and the model to be used for tag 
generation. The react-drag-drop-files library provides a 
FileUploader component that enables users to upload CSV 
files, restricting them to only CSV file types (see Fig. 9). 

 

Fig. 9. Front-end application interface. 

The component dynamically renders elements based on 
the current state. For example, it displays generated tags if 
available, shows loading indicators during file processing, and 
renders error messages if any errors occur (see Fig. 10). 
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Fig. 10. Successful file upload (with generated tags) (left) and unsuccessful 
file upload (right). 

The application's styling is maintained through CSS with 
style rules defined in the App.css file. These styles are 
designed to offer users a clean and intuitive layout, enhancing 
the overall interaction experience. 

C. Hosting 

Vercel facilitates automatic deployments triggered by 
changes to the respective front-end or back-end folders within 
the main branch of the source code’s repository. Both the 
front-end and back-end source code are hosted in a single 
repository. A repository that contains multiple projects, such 
as the back-end and front-end, is called a monorepo [39]. The 
deployment of the application on Vercel is separated into 2 
different Vercel projects: gpt-tagger and gpt-tagger-frontend. 
This is Vercel’s recommended approach to deploying 
applications that use a monorepo [40]. 

In the case of the back-end project (gpt-tagger), a custom 
vercel.json configuration file is used to define information for 
Vercel to set up a Python runtime when deploying. For the 
front-end project (gpt-tagger-frontend), no configuration file 
is needed as Vercel can natively handle the configuration for 
a React application.  

Vercel allows for the definition of environment variables 
specific to each project. As such, all necessary environment 
variables are defined for both projects inside the Vercel 
platform. The hosted prototype can be accessed via https://gpt-
tagger-frontend.vercel.app/. 

V. EVALUATION OF THE PROTOTYPE 

The primary objectives of this testing were to assess the 
application's functionality, relevancy of generated tags, the 
quality of translations from English to Estonian, user-
friendliness, and gather general feedback for further 
improvement of the prototype. In the following subsections, 
the methodology and results of the evaluation are presented. 

1) Prototype Evaluation Methodology 
The evaluation of the prototype application involved 

conducting usability testing through a Google Forms survey. 
The survey was designed with three sections, each aimed at 
assessing specific aspects of the prototype, which are 
described below. Before taking the survey, participants were 
introduced with a brief description of the survey purpose 
(incl., its objective, brief overview of the process, and the 
length) and prototype, informed about consent for further use 
of collected data, as well as specifying that datasets uploaded 
are processed according to OpenAI's enterprise privacy. 

The first part of the survey aimed to evaluate tagging 
accuracy of the prototype with pre-defined sample datasets. 
Participants were provided with instructions on the prototype 
use and links to two sample datasets sourced from the 

Estonian Open Data Portal. Participants were asked to try out 
the prototype by following the provided instructions on its use, 
by uploading respective datasets to the prototype. In the 
survey, respondents were required to answer the same set of 
questions for each dataset provided. 

The first question was “How relevant are the generated 
tags to the actual content of the datasets?”. Participants were 
asked to assess the relevance of the generated tags to the actual 
content, constituting an acceptability task, where answers 
were defined using 5-point Likert scale, where 1 point 
corresponds to “not relevant at all” and 5 to “very relevant”. 
If a low score was assigned, the participant was followed up 
with a question asking for a justification for this score. Then, 
evaluation of how the parameter “number of keywords” 
affects the relevancy of generated tags took place. The 
answers were four predefined options, namely “Yes, improves 
relevancy significantly”, “Yes, improves relevancy slightly”, 
“No, does not improve or worsen relevancy” and “No, rather 
worsens relevancy”. If a negative answer was given, the 
respondent was followed up with the open-ended question “If 
tags relevancy worsens, how and at which number of 
keywords?”. Afterwards, the participants were asked which 
LLM produced more relevant better tags with options being 
“GPT-3.5-turbo”, “GPT-4” and “Both had results of similar 
relevancy”. Finally, the respondents were asked to assess the 
combination of different parameters, with the question being 
“Which combination of the options "number of keywords" and 
"model" seemed to produce the most relevant results?”. This 
question was open-ended. Additionally, Estonian speakers 
were asked to assess the accuracy of Estonian translations of 
tags. As being a native speaker of Estonian was not a 
mandatory prerequisite for participating in the survey, this 
question was optional. 

The second section of the survey provided participants 
with the opportunity to try the prototype application with their 
own datasets. While this section was optional, participants 
were encouraged to test the application with a dataset of their 
own choice, while providing links to Estonian Open Data 
Portal and European Data Portal, from which open dataset 
could be selected by them. After testing their dataset, 
participants were asked to share any observations or feedback 
regarding the tagging process. This feedback was collected to 
map potential areas of the prototype for improvement. 

The third section of the survey focused on gathering 
general feedback on the prototype application. Participants 
were asked to provide feedback on the overall user-
friendliness of the application, whether they would consider 
using it in their workflow (developing questions following the 
Unified Theory of Acceptance and Use of Technology 
(UTAUT) and Technology Acceptance Model (TAM) 
constructs for evaluating technology adoption), and if they 
encountered any prototype operation errors or issues during 
testing. In the first question of this section, the participant was 
asked to rate how user-friendly the prototype is, representing 
an acceptability task, with the answers defined using a 5-point 
Likert scale, where 1 point corresponds to “Not user friendly” 
and 5 points corresponds to “Very user friendly”. If a low 
score was given, the respondent was followed up with an 
open-ended question to specify why they found the prototype 
to not be user friendly. Then, the participant was asked to rate 
the usefulness of the prototype, also constituting an 
acceptability task using a 5-point Likert scale, where 1 point 
corresponds to “Not useful at all” and 5 points corresponds to 
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“Very useful”. If the respondent found the prototype to be 
insufficiently useful, they were followed up with a question 
asking them to justify their answer to the previous question. 
The participant was then asked if they would use the prototype 
for the purpose of tagging datasets and if they ran into any 
unexpected behavior or issues when using the prototype, with 
both questions being closed-ended with consisting of 
predefined answers “Yes” or “No”. If the respondent did run 
into unexpected behavior or issues, they were followed up 
with an open-ended question asking them to describe the 
issue(s). Finally, participants were given the opportunity to 
offer suggestions for improvement or features they would like 
to see implemented in future iterations of the application.  

2) Evaluation Results 
The survey was distributed through social media, emailing 

to Estonian Open Data Portal representatives and personal 
channels, gathering in total 22 responses. The survey was 
targeted at individuals, who actively work or engage with 
datasets within their professional or personal domains. 

Most respondents found generated tags relevant to the 
actual content of the datasets with an average value being 4.4 
of 5 points, i.e., predominantly relevant, with no 1 or 2 points 
received. In cases, where respondents found tags to be less 
relevant (3 to 4 points), reasoning behind low relevance score 
was justified by respondents through the fact that while most 
tags were relevant to the dataset, some were overly specific, 
failing to encapsulate the broader essence of the datasets. 

About 74% of respondents reported that changing the 
number of tags to be generated option improves relevancy 
with the largest share reporting that it improves changes 
slightly. From the obtained open-ended question seeking to 
find how and at which number of keywords tags relevancy 
worsens, a consensus emerged that increasing the number of 
tags generally enhanced accuracy or provided opportunities to 
discern more precise tags amid less accurate ones. 

The majority of respondents (65%) highlighted that the 
best performing model was GPT-4, with the prevailing 
dominance of respondents highlighted that the combination of 
GPT-4 and utilizing 5 or more keywords appeared to 
consistently yield the most relevant outcomes for respondents. 

Finally, as regards the Estonian tag translations, most 
answers accumulated to the values of 4 and 5 with no 
respondents assessing it with 1 or 2. 

While participants found that GPT-4 generally 
outperforms GPT-3.5-turbo with generating tags, it was 
pointed out that in some rare cases the LLM returns 
incomprehensible output instead of relevant tags. 
Furthermore, several comments were made about the Estonian 
translations differing when using GPT-3.5-turbo and GPT-4, 
although these models were not used for translation, as a 
separate translation service was used to translate the English 
tags to Estonian (see Section III and IV).  

The prototype was found by participants useful with 54% 
respondents rated the usefulness of the prototype with the 
score 4, and 27% participants found it to be very useful, thus 
giving it 5 of 5 points. The reasons for lower usefulness scores 
were commented by respondents to be due (1) the LLM has a 
hallucination problem, i.e., sometimes irrelevant tags are 
produced; (2) a tool is standalone, whereas it would be more 
useful if it was integrated into an open data portal; (3) multiple 

different combinations of “number of keywords” and “model” 
must be tried in order to find optimal tags. 

The prototype was found to be generally user-friendly with 
64% assessing it with 4 to 5 points. For the justification of 
lower user-friendliness scores, participants pointed out three 
concerns: (1) files had to be reuploaded any time the user 
wanted to change parameters such as “number of keywords” 
or  “model”; (2) prototype was limited to only one file type, 
namely .csv; (3) file size limit was not specified, where as 
regards the latter - absence of a specified size limit, the 
prototype was designed to operate without imposing an 
arbitrary file size restriction (see Section IV.B).  

As regards unexpected behavior or issues with the 
prototype, 3 participants encountered such, where the main 
issue that users encountered was the prototype generating a 
different number of tags than was actually selected in the 
“number of keywords” option.  

Finally, 82% participants suggested they further use of the 
prototype. Some participants have also provided several 
suggestions for further improvement of the prototype, which 
are: (1) possibility to approve or disprove the tags coming 
from the model; (2) improvement of tagging accuracy; (3) 
option to export results, which will be considered as further 
improvements of the prototype. 

VI. DISCUSSION 

The proposed LLM-powered TAGging Interface for 
automating the dataset tagging process confirms the strong 
potential of LLMs in this domain. By leveraging advanced 
natural language understanding, TAGIFY is able to generate 
meaningful and contextually relevant tags, offering a 
significant improvement over traditional methods. This aligns 
with the findings of [41], where BRYT—a hybrid approach 
that integrates various Natural Language Processing (NLP) 
techniques, namely BERT, RAKE, YAKE, TextRank, and 
ChatGPT—has shown superior performance in automated 
metadata extraction, surpassing other approaches in terms of 
accurately extracting keywords, themes, categories, and 
dataset descriptions. However, despite the promising 
capabilities offered by AI, research in this area remains 
relatively underdeveloped. 

The prototype developed within this study received 
positive feedback from participants in several key areas. 
Firstly, respondents generally rated the relevance of the 
generated tags highly, with an average rating of 4.4 out of 5. 
This indicates that the prototype effectively captured the 
essence of the datasets. Moreover, a significant portion of 
participants reported that adjusting the "number of keywords" 
option improved tag relevancy, suggesting flexibility in fine-
tuning the tagging process. Additionally, most respondents 
favored the GPT-4 model for its superior performance in tag 
generation compared to GPT-3.5-turbo that was originally 
selected for its superiority over other LLMs (Section III.C). 
The superior performance of GPT-4 compared to other models 
aligns with findings from Refuel's LLM Labeling Technical 
Report [26], according to which, GPT-4 achieved an average 
label quality score of 0.884 (the percentage agreement with 
ground truth labels), whereas GPT-3.5 scored 0.813. 
Additionally, our evaluation of tag relevancy—considering 
both GPT-3.5 and GPT-4—yielded an average score of 4.4 out 
of 5, indicating consistency with Refuel's findings, though 
further evaluation with a larger user base and expanded scope 
is recommended to substantiate these results. The combination 
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of GPT-4 with five or more keywords emerged as the most 
effective strategy for producing relevant tags consistently. 
Furthermore, Estonian speakers generally expressed 
satisfaction with the accuracy of the Estonian tag translations. 
These results are aligned with [26], i.e., TAGIFY being based 
on LLMs, can achieve dataset labeling quality comparable to 
or exceeding that of skilled human annotators, while data 
publishers are often not skilled annotators, but signifitcantly 
faster and cheaper (e.g., according to [26], ~20x faster and ~7x 
cheaper). 

Despite the positive reception, user feedback identified 
areas for improvement in the prototype. Notably, some 
participants encountered instances, where the application 
produced irrelevant tags or incomprehensible output. In 
addition, some feedback highlighted that certain tags were 
overly specific, failing to encapsulate the broader content 
adequately. Furthermore, feedback regarding user interface 
and functionality emphasized concerns, such as the need to 
reupload files when adjusting parameters, limitations in 
supported file types and the standalone nature of the tool. 

To improve the usefulness of the application, issues with 
tagging accuracy (although pointed to by a minority of 
participants) must be addressed. These issues could be 
addressed by refining the initial system prompt provided to the 
LLM or by supplying more than 10 rows of dataset content for 
the LLM to analyze. Although experimentation has shown 
that 10 rows is one of the lowest thresholds that still allows the 
LLM to generate relevant tags, where every additional row 
provided for analysis would increase the computational 
resources required, thus making the process more expensive 
(Section III), increasing the amount of data the LLM processes 
allows it to make better generalizations based on the dataset.  

Furthermore, feedback regarding user interface and 
functionality emphasised concerns such as the need to 
reupload files when adjusting parameters, limitations in 
supported file types and the standalone nature of the tool. 
These recommended improvements to the user interface can 
be implemented in the future to enhance user experience, 
particularly focusing on the interaction with the file upload 
logic. This includes expanding the file type support to 
common formats such as JSON, HTML, XLS, XLSX, and 
XML, and ensuring parameter values can be changed 
dynamically without the need to re-upload the dataset. The 
latter, namely, stand-alone nature of the tool stressed by 
evaluators, however, is due to the fact that the evaluated 
artefact is a prototype, which was made publicly available by 
hosting it as a stand-alone tool exclusively for its testing 
purposes. As such, once it is improved to meet evaluators 
expectations, it is expected to be integrated with existing open 
data portals, thereby broadening accessibility and utility for a 
wider audience.  

VII. CONCLUSION 

This study aimed to address the challenge of poor data 
findability and metadata quality associated with open datasets. 
To this end, TAGIFY – LLM-powered TAGging Interface -
was developed that automates the tagging process by 
employing GPT-3.5-turbo and GPT-4, which presents 
significant benefits for both data publishers and consumers. 
Automatic tagging can reduce the risk for data publishers of 
publishing datasets that lack tags, which is a common issue on 
portals where tag indication when preparing metadata 
accompanying dataset is not mandatory. Additionally, this 

automation reduces association of datasets with incomplete or 
inaccurate tags, thereby contributing to metadata quality, as 
well as dataset’s FAIRness. 

The application was developed as a web service. This 
approach was chosen to ensure that the project is not limited 
to the Estonian Open Data Portal or OGD portals in general, 
making it environment-agnostic and interoperable with other 
products.  

In assessing the prototype, a survey was administered, 
garnering 22 responses. Participants assessed various aspects 
of the application through its thorough examination, including 
the relevance of generated tags, user-friendliness, and overall 
usefulness, which were generally positively assessed by them. 
The feedback provided by respondents was used to identify 
areas for future improvement of the prototype.  

As such, this study contributes to the realm of open data 
by promoting greater transparency and documentation 
through the adoption of Generative AI, which is emerging as 
a key component of the Fourth Wave of Open Data [42]. This, 
in turn, improves data findability, accessibility, enabling 
interoperability and as a result – reusability, thereby 
contributing to development and maintenance of more 
resilient and sustainable public and open data ecosystem. 
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