
TAGIFY: LLM-powered Tagging Interface for

Improved Data Findability on OGD portals

Kevin Kliimask∗, Anastasija Nikiforova†‡,
∗ Institute of Computer Science, University of Tartu, Tartu, Estonia

Email: kevin.kliimask@ut.ee
†Faculty of Science and Technology, Institute of Computer Science, University of Tartu, Tartu, Estonia

Email: nikiforova.anastasija@gmail.com

Abstract—Efforts directed towards promoting Open

Government Data (OGD) have gained significant traction across

various governmental tiers since the mid-2000s. As more

datasets are published on OGD portals, finding specific data

becomes harder, leading to information overload and so-called

“dark data”. Complete and accurate documentation of datasets,

including association of proper tags with datasets is key to

improving dataset findability and accessibility. Analysis

conducted on the Estonian Open Data Portal revealed that 11%

datasets have no associated tags, while 26% had only one tag

assigned to them, which underscores challenges in data

findability and accessibility within the portal, which, according

to the recent Open Data Maturity Report, is considered trend-

setter. The aim of this study is to propose an automated solution

to tagging datasets to improve data findability on OGD portals.

This paper presents TAGIFY – a prototype of tagging interface

that employs large language models (LLM) such as GPT-3.5-

turbo and GPT-4 to automate dataset tagging, generating tags

for datasets in English and Estonian, thereby augmenting

metadata preparation by data publishers and improving data

findability on OGD portals by data users. The developed

solution was evaluated by users and their feedback was collected

to define an agenda for future prototype improvements.

Keywords—automation, findability, Generative AI, GPT,

GPT-4, GPT-3.5, GPT-3.5-turbo, large language model, LLM,

metadata, Open Government Data, open data portal, tag

I. INTRODUCTION

In recent times, governments around the world have
developed Open Government Data (OGD) initiatives,
merging the principles of open government and open data [1].
Governments around the globe publish governmental data on
OGD portals that become available for a wide audience of
users. Yet, users face difficulties in finding and discovering
datasets related to their goals due to lack of sufficient
descriptive metadata in open data catalogues [2]. As an
increasing number of datasets become accessible, the
challenge of information overload arises due to the difficulty
in locating specific information [3], often resulting in “dark
data”. A recommended approach to enhance the
discoverability and shareability of published datasets involves
employing expressive descriptors, such as tags, effectively
[3]. Descriptors constitute a form of metadata, providing
details about the content of a resource to assist in its discovery
or comprehension [4]. Incomplete or inaccurate metadata
inhibits consumers from discovering relevant data for their
requirements, leading to the necessity of spending significant
time manually searching through portals and the data itself to
identify relevant datasets [3, 5].

While tags may seem to be a trivial searching facet, the
current practice shows that both their presence and relevance
to the actual dataset tend to be a challenge for OGD portals,
including the Estonian Open Data Portal, which, according to
various open data rankings, is recognized among “trend-
setters” [20]. Through an analysis of the Estonian Open Data

Portal conducted as part of this study (Section II.C),
significant shortcomings were discovered in data tagging
practices, i.e., among 1787 datasets published (as of April
2024), 11% have no associated tags, while for 26% datasets
have only one tag assigned to them. These findings underscore
challenges in data findability and accessibility within the
portal.

The aim of this study is to address the challenges
associated with dataset findability and metadata quality by
developing a prototype that automates the tagging process by
employing a large language model (LLM). The emergence of
LLMs as a subset of Generative AI offers a compelling
alternative, utilizing advanced natural language understanding
to generate meaningful tags. The development of such a tool
holds significant promise for both data publishers and
consumers. Automating the tagging process for data
publishers mitigates the risk of datasets lacking tags, a
common occurrence on portals where their inclusion isn't
mandatory, i.e., the design of the portal does not suggest that
they are mandatory. Moreover, this automation minimises the
association of datasets with incomplete or inaccurate tags.
Consequently, it enhances the findability and accessibility of
datasets, facilitating streamlined access for users. By
streamlining the metadata enrichment process, publishers can
allocate resources more efficiently and accelerate the
dissemination of datasets associated with high-quality tags.

As such, this study proposes TAGIFY – LLM-powered
TAGging Interface to automate the tagging process for
datasets formatted in CSV as one of the most popular open
data formats [6, 7]. TAGIFY is developed as a web service,
designed to optimise interoperability and integration with
different platforms and systems. Additionally, a front-end
application is developed to conduct its usability testing with
actual users. The prototype is evaluated with over 20 users,
collecting the feedback on its efficiency, effectiveness,
evaluating the relevancy of generated tags, along with user-
friendliness and usefulness of the prototype, as well as
collecting the feedback for its further improvement.

The paper is organised as follows: Section 2 defines the
core concepts related to the study and explains data findability
issues faced by users of open data portals. Section 3 introduces
the implementations strategy of this study. Section 4 presents
the implementation of the prototype. Section 5 presents
evaluation of the prototype. Section 6 and 7 presents the
discussion, acknowledge limitations, and outlines future
improvements of the prototype.

II. BACKGROUND

This section defines the core concepts used in the paper,
including OGD and FAIR principles with further
determination of the problem this study attempts to resolve.

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

979-8-3503-5475-1/24/$31.00 ©2024 IEEE

A. Open Government Data vs FAIR data

Initiatives aimed at fostering OGD, including the
establishment of OGD portals, have seen widespread adoption
since the mid-2000s across governmental levels [8]. The
Organisation for Economic Co-operation and Development
(OECD) defines OGD as both a philosophy and a set of
policies aimed at fostering transparency, accountability, and
value generation by making government data accessible to the
public [9]. To be recognized as OGD these data must be also
compliant with principles set by the Open Data Charter,
according to which they must be open by default, timely and
comprehensive, accessible and usable, comparable and
interoperable, suitable for improved governance and citizen
engagement, as well as for inclusive development and
innovation [10]. By sharing data that public entities generate
in substantial amounts, these data are seen to enhance
transparency and accountability to citizens, while their use and
reuse promote the creation of businesses and innovative
citizen-centric services [9]. This movement has been joined by
most countries globally.

Another concept closely related to OGD that aims to
maximise the value and usability of data, albeit within another
context, is FAIR. FAIR [12] is the set of guiding principles
that enable both machines and humans to find, access,
interoperate and re-use data and metadata [13,14]. FAIR
stands for Findability, Accessibility, Interoperability and
Reusability. Findability is the principle, according to which,
both humans and computers should encounter minimal
difficulty in locating metadata and data resources, where
machine-readable metadata plays a crucial role in facilitating
automated discovery of datasets and services, thus
constituting a fundamental aspect of the FAIRification
process. Accessibility requires that after locating the desired
data, the user must ascertain the methods for accessing them,
which may involve considerations such as authentication and
authorization processes. Interoperability sets prerequisites for
data to be integrated with other datasets, making them capable
of interoperating with various applications or workflows for
purposes such as analysis, storage, and processing.
Reusability, being the primary goal of FAIR, dictates the need
to enhance the efficiency of data reuse. This entails ensuring
that metadata and data are well-described so they can be
reused in different settings [14].

As such, OGD initiatives and FAIR principles share
common goals of maximising the value and usability of data
by promoting principles of openness, accessibility,
interoperability, and reusability. However, although both are
related concepts, they serve slightly different purposes, where
OGD initiatives focus specifically on making government
data open and accessible to the public, while FAIR principles
provide a broader framework for ensuring that data, regardless
of its source, is findable, accessible, interoperable, and
reusable (FAIR). As such, data can be compliant with the open
(government) data principles, but not necessarily compliant
with FAIR principles and vice versa, FAIR data is not
necessarily open (government) data principles-compliant,
whereas the greatest result is achieved, when both sets of
principles are fulfilled [15,42].

B. Data Findability Issues

Data published on (open) data portals is subject for search
through several approaches, namely, text search that allows
dataset search by their title, and faceted search that allows
datasets search by facets such as publisher, file format,

spatial/geographical coverage, time period-, keyword- and
tag-based, with keyword- and tag-based search being
prevalent [1,16]. While some facets used for dataset search
can be automatically retrieved from the data associated with
the publisher or the dataset, e.g., dataset format, some facets,
such as spatial coverage and tags, are expected to be provided
by the data publisher, where the quality of tags (completeness,
accuracy etc.), depend directly on the data provided by
publishers. These tags being thought of as “expressive
descriptors” [3] play a crucial role in facilitating efficient
navigation through data portals [2, 3]. By associating datasets
with relevant tags, users can locate datasets relating to specific
topics of their interest [2, 3].

Entering tags manually is slow and prone to human errors,
such as tags are not always being accurate or relevant to the
actual dataset [3, 17]. Additionally, if the portal's design
doesn't enforce mandatory tagging, publishers may overlook
tagging entirely due to its time-consuming nature, which is
one of barriers towards data opening [20]. Inadequate
metadata, including descriptions or tags, renders both manual
and automated searches ineffective in locating the dataset,
thus making the dataset non-findable, inaccessible,
interoperable, and consequently – non-re-usable [18,42].

While tags may seem to be a trivial facet, the current
practice shows that both their presence and relevance to the
actual dataset tend to be a challenge for OGD portals,
including the Estonian Open Data Portal, as found out in
conversation with Estonian Open Data Portal representatives,
regardless of the fact that, according to various open data
rankings, is recognized among “trend-setters” [20]. To this
end, to assess the relevance of the topic of this study and
Estonian open data as a domain of application, an analysis of
datasets available on the Estonian Open Data Portal was
conducted with the aim to examine the relevance of the issue
in question, i.e., lack of or insufficient quality of tags
associated with published datasets on Estonian Open Data
Portal.

C. Analysis of datasets tags in Estonian Open Data Portal

To analyse the number of tags associated with each dataset
on the portal as defined by data publishers, a Python scraping
script was developed (see Fig. 1), the code of which is
available in a Github repository -
https://github.com/kevinkliimask/gpt-tagger. The script
operates as follows:

• list of all datasets on the portal is retrieved using the
get_datasets_list() function, which iterates over each
dataset. get_datasets_list() fetches datasets from the
API endpoint https://avaandmed.eesti.ee/api/datasets;

• for each dataset, information is retrieved using the
get_dataset(uuid) function, where the parameter uuid
is the dataset's unique identifier. It fetches the detailed
information from the API endpoint
https://avaandmed.eesti.ee/api/datasets/{uuid};

• the length of the datasets’s tag/keywords field is
determined. The count of tags for each dataset is then
incremented in the counts dictionary;

• once all the retrieved datasets are processed, the
dictionary containing counts for each number of tags is
printed out.

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

Fig. 1. Estonian open data portal scraping script

The analysis performed in accordance with this procedure,
uncovered negative trends in datasets tagging practice,
thereby confirming the relevance of the study objective. Out
of the 1787 datasets published (as of 23.04.24), 190 datasets
(11%) lacked any associated tags, while 457 (26%) had only
one tag assigned to them. This infringes the principles of
FAIR, i.e., if a dataset is lacking relevant metadata such as
tags, it will be more difficult for interested parties to find it
(infringes findability) and to integrate it with other datasets
(infringes interoperability) [14]. As a result, lack of
keywords/tags will make the dataset less likely to be used,
which infringes reusability [14]. This indicates potential areas
for improvement in dataset tagging within the portal through
augmentation of this process, which is a central objective of
this study. As advancements in artificial intelligence
technologies continue, they can be harnessed to enhance the
discoverability of data through automated tagging of datasets.
Moreover, automation elements are inherent to the FAIR
vision [19].

III. IMPLEMENTATION STRATEGY AND TECHNOLOGICAL

FRAMEWORK

The objective of the study is achieved by automating
dataset tagging, which, in turn, is achieved by employing a
LLM that powers TAGIFY – a prototype of TAGging
Interface. LLM is appropriate for this purpose, as it was found
to be useful for predicting tags from partial content of a dataset
[22]. As such, the following steps outline the process of
automatically tagging a dataset:

1. the LLM gets a system prompt describing to it which
data it will receive, which task it has to do and how its
response should be formatted. A system prompt is a
message that can be used to specify the persona used
by the model in its replies [23]. Instructions to the
LLM are provided in English;

2. then, the LLM is provided with the first rows of a
dataset, including the dataset’s header row. The
number of rows provided to the LLM is 10.
Experimentation has shown that this number of rows
is one of the lowest that still allows the LLM to
generate relevant tags. Moreover, every additional
row provided for analysis would increase the

computational resources required, thus making the
process more expensive. Furthermore, this number of
rows also fits inside the input token limit of the LLM,
which determines the maximum length of the input
string that the LLM can accept;

3. after processing the input, the LLM outputs a list of
relevant tags. The tags are in English. The number of
tags to output can be chosen by the user, of which the
LLM is informed through the initial system prompt;

4. finally, in addition to the English tags generated by
LLM at step 3, translation of the generated tags in
Estonian, as the language of a portal with which it will
be tested and to which it is planned to integrate it to,
is returned to the user. In other words, translations do
not originate from the LLM, instead, the English tags
generated by the LLM are translated separately by
using a machine translation service’s API.

A. Interfacing with the LLM

Communication with the LLM is achieved through a
RESTful web service, which handles interfacing with the
LLM’s API. A RESTful web service is a web application that
adheres to REST standards [24]. Web services enable various
organisations or applications from diverse origins to interact
without the necessity of exchanging sensitive data or IT
infrastructure [25]. Developing the project as a web service
has the benefit of not limiting the project to the Estonian Open
Data Portal or OGD portals in general, thereby making it
environment-agnostic, which will make it convenient to
integrate the tagging service with other products.

Additionally, a basic graphical user interface (GUI) is
developed to interface with the web service. This is done to
allow for a more streamlined and user-friendly usability
testing (Section V). To facilitate usability testing over
distance, the application is deployed to the cloud. By
implementing this approach, users will be spared the need to
set up the application locally, thus alleviating the associated
inconvenience. Furthermore, it ensures that sensitive API keys
remain protected and do not need to be shared with users
during the testing phase.

B. Technology Choices

This section presents technological choices made to
develop an automated tagging service, with the reference to
both LLM, web service framework, GUI framework,
translation service and cloud provider.

1) Large Language Model: Since the prototype under

development is LLM-powered, the first technological choice

concerned which LLM to use. The factors that determined the

choice of LLM were performance, cost and ease of

implementation. Several benchmarks have been developed to

evaluate the performance of a LLM, such as HELM (Holistic

Evaluation of Language Models), which is a research

benchmark developed by the Stanford CRFM (Center for

Research on Foundation Models) to assess performance

across a variety of prediction and generation scenarios, Open

LLM leaderboard by HuggingFace, which is a leaderboard

for open source LLM evaluation across 4 benchmarks -

MMLU, TruthfulQA, HellaSwag and AI2 reasoning, and

Chatbot Arena by LMSys, which is a benchmark utilising an

Elo-derived ranking system, aggregated over pairwise battles

[26]. However, there is no widely used benchmark for

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

evaluating performance of LLMs as data annotators [26]. To

this end, we referred to a technical report by Refuel [26] to

find a LLM with the best trade-off between label quality and

cost. The report evaluated the performance of 6 LLMs,

namely Text-davinci-003, GPT-3.5-turbo, GPT-4, Claude-

v1, FLAN-T5-XXL, PaLM-2 for labelling datasets. The

report identified that the top-3 LLMs with the best trade-off

between label quality and cost are FLAN-T5-XXL, PaLM-2

and GPT-3.5-turbo, which were further considered for the

purpose of this study. An additional investigation of the three

LLMs revealed that FLAN-T5-XXL requires self-hosting,

which increases the complexity of developing the solution.

PaLM-2 and GPT-3.5-turbo offer a paid API, which is easier

to implement than a self-hosted LLM. As the performance of

the 2 models is similar, where GPT-3.5-turbo generates better

quality labels compared to PaLM-2 in 5 out of 10 datasets,

while the cost per label of PaLM-2 is ~70% higher [21], the

choice to use GPT-3.5-turbo was made.
In addition, during development, the decision to include

GPT-4 as an additional option was made, incl. to better
evaluate GPT-3.5-turbo.

2) Web Service: A RESTful web framework was used to

develop a HTTP-based API for accessing the web service.

The choice of framework was FastAPI - a “web framework

for building APIs with Python 3.8+ based on standard

Python type hints” [27], as according to independent

benchmarks by TechEmpower, FastAPI is considered as one

of the fastest Python frameworks available, only below

Starlette and Uvicorn [28]. FastAPI is built upon Starlette,

which itself is built upon Uvicorn, which explains the

differences in performance as this hierarchical architecture

inherently introduces additional layers of abstraction,

resulting in increased overhead [28]. But as an added benefit,

FastAPI provides more features on top of Starlette, such as

data validation and serialisation that are essential to building

APIs [28]. By using a higher-level framework such as

FastAPI, development time is saved and similar performance

to a lower-level framework, such as Starlette, can be achieved

as features missing in Starlette would have to be developed

manually [28]. In addition, OpenAI (the company that offers

the GPT-3.5-turbo and GPT-4 models) provides official

Python bindings for using their models [29], which makes

using a Python-based framework convenient.

3) Graphical User Interface: When making a decision

about a graphical user interface, a choice in favour of one of

two options should be made, namely a desktop application or

a web application. A front-end web application as the

graphical user interface was chosen to facilitate a more

seamless user testing experience. The decision was

influenced by several factors. Notably, web applications offer

the advantage of immediate accessibility without the need for

installation, ensuring users can swiftly engage with the

application across different devices and operating systems

[30]. While it is acknowledged that web applications rely on

an internet connection, which could be perceived as a

limitation [30], usage of the LLM requires an Internet

connection regardless. Therefore, this potential drawback

becomes irrelevant in the context of this study.

Node.js and React stand as two of the most used front-end
web frameworks globally [31]. Node.js is an open-source
JavaScript runtime environment that facilitates the
development of servers and web applications [32].
Conversely, React is described as a “library for web and
native user interfaces” [33]. Given that Node.js is
predominantly tailored towards API creation, while React is
renowned for its prowess in creating user interfaces [34], the
decision to use React was made due to its better alignment
with the project’s requirements.

4) Machine Translation Service: For this project, the

criteria for choosing a machine translation service was that it

must be accurate and have an accessible API. According to

research conducted by Intento [35], DeepL emerged as the

top-performing neural machine translation service. DeepL

offers a free, although limited, access plan to access their

API. Additionally, the existence of an official Python library

maintained by DeepL facilitates its convenient integration

into the application. Considering these factors, the decision

to use DeepL as the project’s machine translation service was

made. Although Google Translate was initially considered

during the project's early stages, a comparative analysis

revealed that DeepL consistently delivered more accurate

translations. This performance disparity ultimately solidified

DeepL as the preferred choice for the project.

5) Cloud Provider: When selecting a cloud provider, the

primary criteria were cost-effectiveness and ease of

application deployment. For this project Vercel was chosen.

Vercel is a cloud-based platform specifically tailored for

hosting static sites and serverless functions, offering

developers a streamlined process in developing and

launching web projects [37]. Vercel offers the ability to run

back-end code as serverless functions [37]. A serverless

function embodies business logic that operates without

retaining data (stateless) and has a temporary lifespan, being

created and then terminated [38]. These functions persist for

short durations, mere seconds, and are intended to be

triggered by a specific condition, such as an user making a

request. Given that the web service does not need to retain

data and only needs to run upon a request, the utilisation of

serverless functions was deemed aligned with the project. In

addition, Vercel offers a free tier and its straightforward

deployment process further solidified its suitability.

IV. IMPLEMENTATION

In this section, implementation of the prototype back-end
is presented, with subsequent presentation of the front-end.
Finally, the process of hosting the application is presented.

A. Back-end

The back end of the developed prototype consists of 3
main modules: (1) API endpoint, (2) OpenAI service and (3)
translator service:

• API endpoint accepts requests and validates received
data from the user, which is expected to be a .csv file.
The data consists of the first 10 rows of a to-be tagged
dataset, including its header row;

• OpenAI service handles interfacing with OpenAI
API. It creates a system prompt, appends data
received from the API endpoint to a user prompt and

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

sends both messages to the LLM. It, in turn, receives
a response from the LLM with tags (generated by the
LLM in English);

• Translator service handles interfacing with DeepL
API. It takes tags received from OpenAI service and
translates them to another language, which within the
context of the study is Estonian;

• Config module handles loading environment
variables into the application. The necessary
environment variables for the back-end application to
function are front-end url, OpenAI API key and
DeepL API key.

In addition, the back-end project contains a requirements
file for required Python packages and a Vercel configuration
file for the prototype application deployment purposes. The
required Python packages for the project are fastapi, pydantic,
pydantic-settings, python-multipart, uvicorn, openai, deepl
and all dependencies of the preceding packages. All parts of
the developed prototype are available in a Github repository -
https://github.com/kevinkliimask/gpt-tagger. In subsequent
subsections each module is presented in more detail.

1) API Endpoint: The API endpoint accepts data sent via

HTTP POST method. Furthermore, the endpoint is mapped to

the “/” route, also known as the root route. As there are no

other endpoints in the application, it is sufficient to accept

requests only on the root route.
Received data is validated to prevent unexpected

behaviours in the application. The API endpoint accepts a
body consisting of a matrix, where the matrix represents data
from a dataset. In addition, the endpoint accepts count and
model as query parameters from the user. These determine
how many tags the LLM should generate and which LLM
model should be used, respectively. The default values for
these parameters are 5 tags and GPT-3.5-turbo model. The
validation logic sets the following rules for the received data:

• length of data in the request body, which represents
the number of rows of a dataset, must be a maximum
of 10 lines;

• count should be in the range of 3 to 10;

• model should be either GPT-3.5-turbo or GPT-4.

If any of the validations fail, a HTTP exception is returned
as a response shown to the user, specifying the nature of the
error (see Fig. 2).

Fig. 2. API endpoint and data validation logic.

2) OpenAI Service: The OpenAI service defines a

function handle_tagging that uses OpenAI API to generate

tags for a dataset. Communication with OpenAI API is

handled by OpenAI Python library. The function takes a list

of records from a dataset, the number of tags to generate, and

the model to use as input parameters, all provided by the user.

The function builds messages to send to the OpenAI API,

formats the data into a user message, sends the messages to

the API, retrieves the generated tags, splits them into English

tags, and then translates them into Estonian using translator

service. Finally, it returns a dictionary containing both

English and Estonian tags (see Fig. 3).

Fig. 3. OpenAI service logic.

3) Translator Service: To ensure tags are generated in a

language other than English, such as Estonian, as is the case

for this study, translator service is used. The service defines

a function translate_text that uses DeepL API to translate tags

originally generated by the LLM. Interfacing with DeepL

API is handled by the DeepL Python package. The function

accepts a list of tags, source language and destination

language as input parameters, which in this case are English

and Estonian, respectively. The function translates every

string in the input list and returns the translated strings as a

list (see Fig. 4).

Fig. 4. Translator service logic.

4) Config module: The config module defines a Settings

class that inherits from BaseSettings provided by Pydantic -

a library for data validation and settings management. It

specifies the environment variables required for the

application, namely frontend_url, chatgpt_api_key, and

deepl_auth_key. Then, it creates an instance of the Settings

class to load the values of these environment variables (see

Fig. 5). This approach ensures that the application's settings

are correctly loaded and validated from the environment.

Additionally, this setup enables anybody to run the

application and use their own environment variables

seamlessly.

Fig. 5. Config module.

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

B. Front-end

The front-end architecture is centred around a single React
component named App, functioning as the primary entry point
for the application.

1) Dependencies: The application's required packages

are defined in a package.json file. For a React app to operate,

the main dependencies are react, react-dom and react-scripts.

In addition, the developed React application also makes use

of the react-drag-drop-files package to handle file uploads

through drag-and-drop functionality. When starting the app,

the environment variable REACT_APP_BACKEND_URL

must be defined to specify the backend server’s URL.

2) State Management: The useState hook from React is

used to manage component state. The App component utilises

the useState hook to manage states of tags,

selectedNumberOfTags, selectedModel, error, and isLoading

(see Fig. 6). These states are essential for tracking the

uploaded file, selected parameters, error messages, and

loading status.

Fig. 6. App state variables.

3) File Upload and Tag Generation: The handleChange

function is invoked upon uploading a file. It utilises the

readCsv utility function to extract data from the uploaded file.

The readCsv utility function parses the CSV file uploaded by

the user, preparing the data for transmission to the backend.

This function accepts a single parameter file, representing the

uploaded CSV file, and returns a Promise resolving to an

array containing the first 10 rows of the parsed CSV file data

(see Fig. 7). Parsing CSV data in the front-end offers the

advantage of bypassing the need to transfer large files to the

back-end for processing. Consequently, this approach

eliminates the need for a size limit on file uploads, with the

maximum size being solely dictated by the browser, e.g.,

4GB limit in Google Chrome.

Fig. 7. readCsv utility function.

Upon successful CSV file reading, the postFile function
sends the parsed data along with selected parameters
(selectedNumberOfTags and selectedModel) to the server for
tag generation. The postFile function handles the transmission
of data to the backend server for tag generation. It accepts the
following parameters:

• data, which represents the first 10 rows of the
uploaded CSV;

• numberOfTags, which is the number of tags the user
has chosen to be generated by the LLM;

• model, which is the LLM that the user has chosen to
be used for tag generation.

The postFile function constructs the backend URL using
the provided environment variable
REACT_APP_BACKEND_URL, appending query parameters
for count (number of tags) and model. It then performs a
POST request to the constructed URL using the JavaScript
fetch API, which returns a Promise. Finally, the Promise is
resolved and generated tags are extracted from the JSON
response (see Fig. 8). The generated tags are then stored in the
component state (tags), and any errors during the process are
captured and displayed.

Fig. 8. postFile function.

4) User Interface: The handleChange function is invoked

upon uploading a file. It utilises the readCsv utility function

to extract data from the uploaded file. The readCsv utility

function parses the CSV file uploaded by the user, preparing

the data for transmission to the backend. This function

accepts a single parameter file, representing the uploaded

CSV file, and returns a Promise resolving to an array

containing the first 10 rows of the parsed CSV file data.
The user interface consists of a card layout containing the

application title, parameter selection dropdowns, file
uploader, and sections for displaying generated tags, loading
status, and error messages. Dropdown menus are provided for
selecting the number of tags and the model to be used for tag
generation. The react-drag-drop-files library provides a
FileUploader component that enables users to upload CSV
files, restricting them to only CSV file types (see Fig. 9).

Fig. 9. Front-end application interface.

The component dynamically renders elements based on
the current state. For example, it displays generated tags if
available, shows loading indicators during file processing, and
renders error messages if any errors occur (see Fig. 10).

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

Fig. 10. Successful file upload (with generated tags) (left) and unsuccessful
file upload (right).

The application's styling is maintained through CSS with
style rules defined in the App.css file. These styles are
designed to offer users a clean and intuitive layout, enhancing
the overall interaction experience.

C. Hosting

Vercel facilitates automatic deployments triggered by
changes to the respective front-end or back-end folders within
the main branch of the source code’s repository. Both the
front-end and back-end source code are hosted in a single
repository. A repository that contains multiple projects, such
as the back-end and front-end, is called a monorepo [39]. The
deployment of the application on Vercel is separated into 2
different Vercel projects: gpt-tagger and gpt-tagger-frontend.
This is Vercel’s recommended approach to deploying
applications that use a monorepo [40].

In the case of the back-end project (gpt-tagger), a custom
vercel.json configuration file is used to define information for
Vercel to set up a Python runtime when deploying. For the
front-end project (gpt-tagger-frontend), no configuration file
is needed as Vercel can natively handle the configuration for
a React application.

Vercel allows for the definition of environment variables
specific to each project. As such, all necessary environment
variables are defined for both projects inside the Vercel
platform. The hosted prototype can be accessed via https://gpt-
tagger-frontend.vercel.app/.

V. EVALUATION OF THE PROTOTYPE

The primary objectives of this testing were to assess the
application's functionality, relevancy of generated tags, the
quality of translations from English to Estonian, user-
friendliness, and gather general feedback for further
improvement of the prototype. In the following subsections,
the methodology and results of the evaluation are presented.

1) Prototype Evaluation Methodology
The evaluation of the prototype application involved

conducting usability testing through a Google Forms survey.
The survey was designed with three sections, each aimed at
assessing specific aspects of the prototype, which are
described below. Before taking the survey, participants were
introduced with a brief description of the survey purpose
(incl., its objective, brief overview of the process, and the
length) and prototype, informed about consent for further use
of collected data, as well as specifying that datasets uploaded
are processed according to OpenAI's enterprise privacy.

The first part of the survey aimed to evaluate tagging
accuracy of the prototype with pre-defined sample datasets.
Participants were provided with instructions on the prototype
use and links to two sample datasets sourced from the

Estonian Open Data Portal. Participants were asked to try out
the prototype by following the provided instructions on its use,
by uploading respective datasets to the prototype. In the
survey, respondents were required to answer the same set of
questions for each dataset provided.

The first question was “How relevant are the generated
tags to the actual content of the datasets?”. Participants were
asked to assess the relevance of the generated tags to the actual
content, constituting an acceptability task, where answers
were defined using 5-point Likert scale, where 1 point
corresponds to “not relevant at all” and 5 to “very relevant”.
If a low score was assigned, the participant was followed up
with a question asking for a justification for this score. Then,
evaluation of how the parameter “number of keywords”
affects the relevancy of generated tags took place. The
answers were four predefined options, namely “Yes, improves
relevancy significantly”, “Yes, improves relevancy slightly”,
“No, does not improve or worsen relevancy” and “No, rather
worsens relevancy”. If a negative answer was given, the
respondent was followed up with the open-ended question “If
tags relevancy worsens, how and at which number of
keywords?”. Afterwards, the participants were asked which
LLM produced more relevant better tags with options being
“GPT-3.5-turbo”, “GPT-4” and “Both had results of similar
relevancy”. Finally, the respondents were asked to assess the
combination of different parameters, with the question being
“Which combination of the options "number of keywords" and
"model" seemed to produce the most relevant results?”. This
question was open-ended. Additionally, Estonian speakers
were asked to assess the accuracy of Estonian translations of
tags. As being a native speaker of Estonian was not a
mandatory prerequisite for participating in the survey, this
question was optional.

The second section of the survey provided participants
with the opportunity to try the prototype application with their
own datasets. While this section was optional, participants
were encouraged to test the application with a dataset of their
own choice, while providing links to Estonian Open Data
Portal and European Data Portal, from which open dataset
could be selected by them. After testing their dataset,
participants were asked to share any observations or feedback
regarding the tagging process. This feedback was collected to
map potential areas of the prototype for improvement.

The third section of the survey focused on gathering
general feedback on the prototype application. Participants
were asked to provide feedback on the overall user-
friendliness of the application, whether they would consider
using it in their workflow (developing questions following the
Unified Theory of Acceptance and Use of Technology
(UTAUT) and Technology Acceptance Model (TAM)
constructs for evaluating technology adoption), and if they
encountered any prototype operation errors or issues during
testing. In the first question of this section, the participant was
asked to rate how user-friendly the prototype is, representing
an acceptability task, with the answers defined using a 5-point
Likert scale, where 1 point corresponds to “Not user friendly”
and 5 points corresponds to “Very user friendly”. If a low
score was given, the respondent was followed up with an
open-ended question to specify why they found the prototype
to not be user friendly. Then, the participant was asked to rate
the usefulness of the prototype, also constituting an
acceptability task using a 5-point Likert scale, where 1 point
corresponds to “Not useful at all” and 5 points corresponds to

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

“Very useful”. If the respondent found the prototype to be
insufficiently useful, they were followed up with a question
asking them to justify their answer to the previous question.
The participant was then asked if they would use the prototype
for the purpose of tagging datasets and if they ran into any
unexpected behavior or issues when using the prototype, with
both questions being closed-ended with consisting of
predefined answers “Yes” or “No”. If the respondent did run
into unexpected behavior or issues, they were followed up
with an open-ended question asking them to describe the
issue(s). Finally, participants were given the opportunity to
offer suggestions for improvement or features they would like
to see implemented in future iterations of the application.

2) Evaluation Results
The survey was distributed through social media, emailing

to Estonian Open Data Portal representatives and personal
channels, gathering in total 22 responses. The survey was
targeted at individuals, who actively work or engage with
datasets within their professional or personal domains.

Most respondents found generated tags relevant to the
actual content of the datasets with an average value being 4.4
of 5 points, i.e., predominantly relevant, with no 1 or 2 points
received. In cases, where respondents found tags to be less
relevant (3 to 4 points), reasoning behind low relevance score
was justified by respondents through the fact that while most
tags were relevant to the dataset, some were overly specific,
failing to encapsulate the broader essence of the datasets.

About 74% of respondents reported that changing the
number of tags to be generated option improves relevancy
with the largest share reporting that it improves changes
slightly. From the obtained open-ended question seeking to
find how and at which number of keywords tags relevancy
worsens, a consensus emerged that increasing the number of
tags generally enhanced accuracy or provided opportunities to
discern more precise tags amid less accurate ones.

The majority of respondents (65%) highlighted that the
best performing model was GPT-4, with the prevailing
dominance of respondents highlighted that the combination of
GPT-4 and utilizing 5 or more keywords appeared to
consistently yield the most relevant outcomes for respondents.

Finally, as regards the Estonian tag translations, most
answers accumulated to the values of 4 and 5 with no
respondents assessing it with 1 or 2.

While participants found that GPT-4 generally
outperforms GPT-3.5-turbo with generating tags, it was
pointed out that in some rare cases the LLM returns
incomprehensible output instead of relevant tags.
Furthermore, several comments were made about the Estonian
translations differing when using GPT-3.5-turbo and GPT-4,
although these models were not used for translation, as a
separate translation service was used to translate the English
tags to Estonian (see Section III and IV).

The prototype was found by participants useful with 54%
respondents rated the usefulness of the prototype with the
score 4, and 27% participants found it to be very useful, thus
giving it 5 of 5 points. The reasons for lower usefulness scores
were commented by respondents to be due (1) the LLM has a
hallucination problem, i.e., sometimes irrelevant tags are
produced; (2) a tool is standalone, whereas it would be more
useful if it was integrated into an open data portal; (3) multiple

different combinations of “number of keywords” and “model”
must be tried in order to find optimal tags.

The prototype was found to be generally user-friendly with
64% assessing it with 4 to 5 points. For the justification of
lower user-friendliness scores, participants pointed out three
concerns: (1) files had to be reuploaded any time the user
wanted to change parameters such as “number of keywords”
or “model”; (2) prototype was limited to only one file type,
namely .csv; (3) file size limit was not specified, where as
regards the latter - absence of a specified size limit, the
prototype was designed to operate without imposing an
arbitrary file size restriction (see Section IV.B).

As regards unexpected behavior or issues with the
prototype, 3 participants encountered such, where the main
issue that users encountered was the prototype generating a
different number of tags than was actually selected in the
“number of keywords” option.

Finally, 82% participants suggested they further use of the
prototype. Some participants have also provided several
suggestions for further improvement of the prototype, which
are: (1) possibility to approve or disprove the tags coming
from the model; (2) improvement of tagging accuracy; (3)
option to export results, which will be considered as further
improvements of the prototype.

VI. DISCUSSION

The proposed LLM-powered TAGging Interface for
automating the dataset tagging process confirms the strong
potential of LLMs in this domain. By leveraging advanced
natural language understanding, TAGIFY is able to generate
meaningful and contextually relevant tags, offering a
significant improvement over traditional methods. This aligns
with the findings of [41], where BRYT—a hybrid approach
that integrates various Natural Language Processing (NLP)
techniques, namely BERT, RAKE, YAKE, TextRank, and
ChatGPT—has shown superior performance in automated
metadata extraction, surpassing other approaches in terms of
accurately extracting keywords, themes, categories, and
dataset descriptions. However, despite the promising
capabilities offered by AI, research in this area remains
relatively underdeveloped.

The prototype developed within this study received
positive feedback from participants in several key areas.
Firstly, respondents generally rated the relevance of the
generated tags highly, with an average rating of 4.4 out of 5.
This indicates that the prototype effectively captured the
essence of the datasets. Moreover, a significant portion of
participants reported that adjusting the "number of keywords"
option improved tag relevancy, suggesting flexibility in fine-
tuning the tagging process. Additionally, most respondents
favored the GPT-4 model for its superior performance in tag
generation compared to GPT-3.5-turbo that was originally
selected for its superiority over other LLMs (Section III.C).
The superior performance of GPT-4 compared to other models
aligns with findings from Refuel's LLM Labeling Technical
Report [26], according to which, GPT-4 achieved an average
label quality score of 0.884 (the percentage agreement with
ground truth labels), whereas GPT-3.5 scored 0.813.
Additionally, our evaluation of tag relevancy—considering
both GPT-3.5 and GPT-4—yielded an average score of 4.4 out
of 5, indicating consistency with Refuel's findings, though
further evaluation with a larger user base and expanded scope
is recommended to substantiate these results. The combination

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

of GPT-4 with five or more keywords emerged as the most
effective strategy for producing relevant tags consistently.
Furthermore, Estonian speakers generally expressed
satisfaction with the accuracy of the Estonian tag translations.
These results are aligned with [26], i.e., TAGIFY being based
on LLMs, can achieve dataset labeling quality comparable to
or exceeding that of skilled human annotators, while data
publishers are often not skilled annotators, but signifitcantly
faster and cheaper (e.g., according to [26], ~20x faster and ~7x
cheaper).

Despite the positive reception, user feedback identified
areas for improvement in the prototype. Notably, some
participants encountered instances, where the application
produced irrelevant tags or incomprehensible output. In
addition, some feedback highlighted that certain tags were
overly specific, failing to encapsulate the broader content
adequately. Furthermore, feedback regarding user interface
and functionality emphasized concerns, such as the need to
reupload files when adjusting parameters, limitations in
supported file types and the standalone nature of the tool.

To improve the usefulness of the application, issues with
tagging accuracy (although pointed to by a minority of
participants) must be addressed. These issues could be
addressed by refining the initial system prompt provided to the
LLM or by supplying more than 10 rows of dataset content for
the LLM to analyze. Although experimentation has shown
that 10 rows is one of the lowest thresholds that still allows the
LLM to generate relevant tags, where every additional row
provided for analysis would increase the computational
resources required, thus making the process more expensive
(Section III), increasing the amount of data the LLM processes
allows it to make better generalizations based on the dataset.

Furthermore, feedback regarding user interface and
functionality emphasised concerns such as the need to
reupload files when adjusting parameters, limitations in
supported file types and the standalone nature of the tool.
These recommended improvements to the user interface can
be implemented in the future to enhance user experience,
particularly focusing on the interaction with the file upload
logic. This includes expanding the file type support to
common formats such as JSON, HTML, XLS, XLSX, and
XML, and ensuring parameter values can be changed
dynamically without the need to re-upload the dataset. The
latter, namely, stand-alone nature of the tool stressed by
evaluators, however, is due to the fact that the evaluated
artefact is a prototype, which was made publicly available by
hosting it as a stand-alone tool exclusively for its testing
purposes. As such, once it is improved to meet evaluators
expectations, it is expected to be integrated with existing open
data portals, thereby broadening accessibility and utility for a
wider audience.

VII. CONCLUSION

This study aimed to address the challenge of poor data
findability and metadata quality associated with open datasets.
To this end, TAGIFY – LLM-powered TAGging Interface -
was developed that automates the tagging process by
employing GPT-3.5-turbo and GPT-4, which presents
significant benefits for both data publishers and consumers.
Automatic tagging can reduce the risk for data publishers of
publishing datasets that lack tags, which is a common issue on
portals where tag indication when preparing metadata
accompanying dataset is not mandatory. Additionally, this

automation reduces association of datasets with incomplete or
inaccurate tags, thereby contributing to metadata quality, as
well as dataset’s FAIRness.

The application was developed as a web service. This
approach was chosen to ensure that the project is not limited
to the Estonian Open Data Portal or OGD portals in general,
making it environment-agnostic and interoperable with other
products.

In assessing the prototype, a survey was administered,
garnering 22 responses. Participants assessed various aspects
of the application through its thorough examination, including
the relevance of generated tags, user-friendliness, and overall
usefulness, which were generally positively assessed by them.
The feedback provided by respondents was used to identify
areas for future improvement of the prototype.

As such, this study contributes to the realm of open data
by promoting greater transparency and documentation
through the adoption of Generative AI, which is emerging as
a key component of the Fourth Wave of Open Data [42]. This,
in turn, improves data findability, accessibility, enabling
interoperability and as a result – reusability, thereby
contributing to development and maintenance of more
resilient and sustainable public and open data ecosystem.

REFERENCES

[1] Sáez Martín A., Rosario A. H. D., Pérez M. C. C. 2016. An
International Analysis of the Quality of Open Government Data
Portals. Social Science Computer Review, 34(3), 298-311. doi:
10.1177/0894439315585734

[2] Skopal T., Klímek J., Nečaský M. 2020. Improving Findability of Open
Data Beyond Data Catalogs. In Proceedings of the 21st International
Conference on Information Integration and Web-based Applications &
Services (iiWAS2019). Association for Computing Machinery, New
York, NY, USA, 413–417. doi: 10.1145/3366030.3366095

[3] de Castro B. P. C., Rodrigues H. F., Lopes G. R., Campos M. L. M.
2019. Semantic enrichment and exploration of open dataset tags. In
Proceedings of the 25th Brazillian Symposium on Multimedia and the
Web (WebMedia '19). Association for Computing Machinery, New
York, NY, USA, 417–424. doi: 10.1145/3323503.3349562
(04.12.2023)

[4] Riley J. 2017. Understanding metadata. National Information
Standards Organization.
http://www.niso.org/publications/press/UnderstandingMetadata.pdf
(04.12.2023)

[5] Neumaier S., Umbrich J., Polleres A. 2016. Automated Quality
Assessment of Metadata across Open Data Portals. Data and
Information Quality, Volume 8, 1, Article 2. doi: 10.1145/2964909

[6] Alamo T., Reina D.G., Mammarella M., Abella A. 2020. Open data
resources for fighting covid-19. arXiv, preprint. doi:
10.48550/arXiv.2004.06111

[7] Quarati A., De Martino M., Rosim S. 2021. Geospatial open data usage
and metadata quality. ISPRS international journal of geo-information,
10(1), 30. doi: 10.3390/ijgi10010030

[8] Ubaldi B. 2013. Open Government Data: Towards Empirical Analysis
of Open Government Data Initiatives. OECD Working Papers on
Public Governance, No. 22, OECD Publishing, Paris. doi:
10.1787/5k46bj4f03s7-en

[9] Organisation for Economic Co-operation and Development. Open
Government Data. https://www.oecd.org/gov/digital-
government/open-government-data.htm (04.12.2023)

[10] Open Data Charter. ODC Principles.
https://opendatacharter.org/principles/ (15.05.2023)

[11] Republic of Estonia Information System Authority. Estonian open data
portal. https://www.ria.ee/en/state-information-system/data-based-
governance-and-reuse-data/estonian-open-data-portal (08.05.2024)

[12] Wilkinson M., Dumontier M., Aalbersberg I. et al. 2016. The FAIR
Guiding Principles for scientific data management and stewardship. Sci
Data. doi: 10.1038/sdata.2016.18

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

[13] Wilkinson, M.D., Sansone, S.A., Méndez, E., David, R., Dennis, R.,
Hecker, D., Kleemola, M., Lacagnina, C., Nikiforova, A. and Castro,
L.J., 2022. Community-driven governance of FAIRness assessment: an
open issue, an open discussion. Open Research Europe, 2.

[14] GO FAIR. FAIR Principles. https://www.go-fair.org/fair-principles/
(28.02.2024)

[15] Jati P. H. P., Lin Y., Nodehi S., Cahyono D. B., van Reisen M. 2022.
FAIR versus open data: A comparison of objectives and principles.
Data Intelligence. 4(4), 867-881. doi: 10.1162/dint_a_00176

[16] Máchová R., Lněnička M. 2017. Evaluating the Quality of Open Data
Portals on the National Level. Journal of theoretical and applied
electronic commerce research, 12, 21-41. doi: 10.4067/S0718-
18762017000100003

[17] Joni S., Yoganathan V., Corporan J. et al. 2019. Machine learning
approach to auto-tagging online content for content marketing
efficiency: A comparative analysis between methods and content type.
Journal of Business Research, Volume 101, 203–217. doi:
10.1016/j.jbusres.2019.04.018

[18] Braunschweig K., Eberius J., Thiele M., Lehner W. 2012. The State of
Open Data Limits of Current Open Data Platforms.

[19] Weigel T., Schwardmann U., Klump J., Bendoukha S., Quick R. 2020.
Making Data and Workflows Findable for Machines. Data Intelligence.
2 (1-2), 40–46. doi: 10.1162/dint_a_00026

[20] Rajamäe-Soosaar K., Nikiforova A. 2024. Exploring Estonia’s Open
Government Data Development as a Journey towards Excellence:
Unveiling the Progress of Local Governments in Open Data Provision.
In Proceedings of the 25th Annual International Conference on Digital
Government Research.

[21] Estonian Open Data Portal. API manual.
https://avaandmed.eesti.ee/instructions/api-manual (08.05.2024)

[22] Trabelsi M, Cao J, Heflin J. 2020. Semantic Labeling Using a Deep
Contextualized Language Model. doi: 10.48550/arXiv.2010.16037

[23] OpenAPI. Prompt engineering.
https://platform.openai.com/docs/guides/prompt-engineering/strategy-
write-clear-instructions (22.04.2024)

[24] Oracle. What Are RESTful Web Services?
https://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html (22.04.2024)

[25] Bigelow S. J., Lewis S. 2024. Web services. Tech Target.
https://www.techtarget.com/searchapparchitecture/definition/Web-
services (16.04.2024)

[26] Refuel. 2023. LLMs can label data as well as humans, but 100x faster.
https://www.refuel.ai/blog-posts/llm-labeling-technical-report
(16.04.2024)

[27] FastAPI. https://fastapi.tiangolo.com/ (16.04.2024)

[28] FastAPI. Benchmarks. https://fastapi.tiangolo.com/benchmarks/
(02.05.2024)

[29] OpenAI. API reference https://platform.openai.com/docs/api-reference
(16.04.2024)

[30] Desai J. 2023. Web Application Vs Desktop Application: Pros and
Cons. Positiwise. https://positiwise.com/blog/web-application-vs-
desktop-application-pros-and-cons (16.04.2024)

[31] Vailshery L. S. 2023. Most popular web frameworks among developers
worldwide 2023. Statista.
https://www.statista.com/statistics/1124699/worldwide-developer-
survey-most-used-frameworks-web/ (02.05.2024)

[32] Node.js. https://nodejs.org/en (02.05.2024)

[33] React. https://react.dev/ (16.04.2024

[34] Hungbo M. 2024. Node vs. React: The Difference and Which
Framework to Choose. Ninetailed. https://ninetailed.io/blog/node-js-
vs-react-js/ (02.05.2024)

[35] Intento. Independent Multi-Domain Evaluation of Machine Translation
Engines. 2021.
https://fs.hubspotusercontent00.net/hubfs/3317859/Intento%20State%
20of%20Machine%20Translation%202021.pdf (22.04.2024)

[36] Ahmed A. 2023. What is Vercel and Why You Should Use It? Fishtank.
https://www.getfishtank.com/blog/what-is-vercel (23.04.2024)

[37] Vercel. Functions. https://vercel.com/docs/functions (13.05.2024)

[38] Watts S. 2023. The Serverless Functions Beginner's Guide. Splunk.
https://www.splunk.com/en_us/blog/learn/serverless-functions.html
(23.04.2024)

[39] Narwhal Technologies. https://monorepo.tools/ (08.05.2024)

[40] Vercel. Monorepos. https://vercel.com/docs/monorepos (08.05.2024)

[41] Ahmed, U. (2023). Reimagining open data ecosystems: a practical
approach using AI, CI, and knowledge graphs. In BIR Workshops (pp.
235-249).

[42] Lnenicka, M., Nikiforova, A., Clarinval, A., Luterek, M., Rudmark, D.,
Neumaier, S., ... & Bolívar, M. P. R. (2024). Sustainable open data
ecosystems in smart cities: A platform theory-based analysis of 19
European cities. Cities, 148, 104851.

[43] Chafetz, H., Saxena, S., & Verhulst, S. G. (2024). A Fourth Wave of
Open Data? Exploring the Spectrum of Scenarios for Open Data and
Generative AI. arXiv preprint arXiv:2405.04333.

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

