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Abstract—Acute lymphoblastic leukemia is a cancer of the
blood and bone marrow, it is the most common form of childhood
cancer. In the United States, approximately 75% of people
under age 20 diagnosed with leukemia are diagnosed with acute
lymphoblastic leukemia. An estimated 400 people ages 15 to 19
in the US are diagnosed with the disease each year. In this
paper we propose a Deep Learning network-based approach to
detect acute lymphoblastic leukemia from images of blood cells.
Additionally, the suggested approach can offer predictability
through class activation mapping, which aims to automatically
highlight the relevant and suspicious patterns in the image.
We consider a method that uses the output of two separate
class activation mapping techniques to determine whether the
acute lymphoblastic leukemia prediction and localization can
be regarded as resilient. Using a dataset of 6.099 blood cell
images, we assess the efficacy of the suggested method and
achieve an accuracy of 94%, demonstrating the usefulness of the
proposed network for acute lymphoblastic leukemia detection and
localization. Our method introduces also a similarity index aimed
to ""quantify' qualitative results coming from the heatmaps, in
such a way as to improve the trustworthiness and reliability of
the Artificial Intelligence for the medical staff.

Index Terms—Machine Learning, Artificial Intelligence, Acute
Lymphoblastic Leukemia, Visual Explainability

I. INTRODUCTION

Acute lymphoblastic leukemia (ALL) is a malignant trans-
formation and proliferation of white blood cells called lympho-
cytes. The hallmark of ALL involves chromosomal abnormal-
ities and genetic alterations associated with the differentiation
and proliferation of malignant cells. In 2019, it is estimated
that approximately 6,000 new cases of ALL occurred in the
US, which is less than 4% of all blood cancers. Roughly 50%
of these ALL cases occur in children and represent greater than
30% of all pediatric cancers. The incidence of ALL follows a
bimodal distribution, with the first peak occurring in childhood
and the second peak occurring around the age of 50.

In children, survival rates for pediatric ALL have dramati-
cally improved in the past 50 years, with cure rates exceeding
85% in children. However, resistance to therapy is common
and for some children or adolescents, many therapies simply
do not work, resulting in the use of multiple rounds of
alternative chemotherapy. Beyond this, the current therapies
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often lead to long-term side effects (i.e. central nervous sys-
tem impairment, cardiovascular issues, bone growth defects).
Therefore, there is an urgent need to develop safer, more
effective treatments for ALL, particularly for children who
are refractory or resistant. It is also of fundamental importance
to be able to identify the symptoms of leukemia as early as
possible, in order to diagnose the disease and start the relative
therapy. ALL is usually suspected when a test finds abnormal
blood counts and leukemic cells, or blasts, appear in the
blood. Then, the diagnosis is established by examination of the
bone marrow via bone marrow aspiration and biopsy. ALL is
diagnosed when the bone marrow aspirate and biopsy contains
20 percent or more immature cells called blasts, determined
to be lymphoid in nature.

It is generally difficult to be certain of an ALL diagnosis
simply by the appearance of cells under the microscope.
Therefore, additional time-consuming laboratory tests are nor-
mally needed.

One important test is immunophenotyping (also called flow
cytometry), which determines whether the cells are lym-
phoid (ALL) rather than myeloid (AML), based on proteins
expressed in the leukemia cells. Immunophenotyping also
determines whether they are T or B lymphocytes. In addition,
chromosome testing, called cytogenetics, is a critical part of
the evaluation that helps determine the appropriate course of
treatment'.

Recently, we have assisted a growing interest from both
the industrial and academic world in the adoption of Deep
Learning (DL) to face bioengineering-related challenges, from
Alzheimer’s diagnosis directly from brain computerized to-
mography [3] to the red blood cells, white blood cells and
platelets counting from microscopic images [16]. As a matter
of fact, currently, almost every device intended for medical
imaging has a more or less extended image and signal analysis
and for this reason, it is possible to analyze these data by
exploiting and thus integrating artificial intelligence in real-
world medical devices [6], [8], [9], [14], [15], [23].

Thttps://www.ucsthealth.org/conditions/acute-lymphoblastic-leukemia/
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For these reasons, in this paper, we propose a method
aimed at detecting the presence of ALL from microscopic
images related to blood cells. We resort to DL, by exploiting
several convolutional neural networks (CNNs). Considering
that one of the factors that prevent the introduction of artificial
intelligence in the real world (especially in the medical one) is
the lack of explainability, intending to understand the reasons
behind a given prediction we resort to a class activation
mapping technique, in particular the Gradient-weighted Class
Activation Mapping (Grad-CAM) [22] and the Score-Weighted
Visual Explanations Class Activation Mapping (Score-CAM)
[24] to highlight the areas on the microscopic images that
are symptomatic from the ALL disease from the DL model
point of view?. Finally, this paper introduces the Structural
Similarity Indeces Measure (SSIM) 3, a metric to measure the
similarity between two given images. The novelty concerns
the SSIM application i.e. between the previous two CAM
algorithms; intending to "quantize" the qualitative features,
guaranteeing better reliability and trustworthiness of the Al
for the medics. The paper proceeds as follows: in the next
section, we present the proposed method, in Section III the
experimental analysis results are presented and discussed,
the state-of-the-art literature is illustrated in Section IV and,
finally, in the last section conclusions and future research lines
are drawn.

II. THE METHOD

In this section, the methodology applied for the detection
of ALL from cytological images of blood cells is presented.
The main steps are shown in figure 1.

The first step, and one of the fundamental steps, is to obtain
a dataset that is as representative as possible of the problem
under investigation. In addition, concerning the medical con-
text, the dataset must also be certified and validated to make
the results obtained usable.

The next step consists in pre-processing the data contained in
the dataset, to extrapolate or improve the features contained
therein and eliminate any sources of noise and disturbance to
the classification process. In the following, the architectures
to be used in the training and testing phase are defined,
together with the hyperparameters to be used, to select the
best network-hyperparameter combination, and also to make a
comparison between the different networks. The quantitative
performance of the models is evaluated using the metrics of
accuracy, precision, recall, AUC, F-measure and loss.
Finally, a qualitative analysis is carried out to provide ex-
planations for the models obtained. This is performed using
CAM algorithms, in particular Grad-CAM and Score-CAM,
and SSIM.

A. Dataset and preprocessing

The dataset used in this paper was obtained from the Kaggle
website, loaded by Larxel #. The dataset contains a total of

Zhttps://www.lls.org/research/acute-lymphoblastic-leukemia-all
3https://www.imatest.com/docs/ssim/
“https://www.kaggle.com/andrewmvd/datasets

15135 images from 118 different subjects and is divided into
two classes: Healthy and ALL.

The dataset was originally distributed for the proposed chal-
lenge at ISBI 2019. [4]

The task proposed in this challenge was to identify immature
leukemic blasts from healthy cells, a difficult task as the cells
appear morphologically similar.

Figure 2 shows representative images of the classes in the
dataset.

The images contained in the dataset were processed appro-
priately before being used in the training and testing phase.
First, the images were converted to “png’ format and resized
to 256x256 pixels.

Subsequently, a centred zoom was performed on them, using
a zoom factor of 0.6, to eliminate as much as possible
of the background region and thus areas irrelevant to the
classification process.

The reason for using the zoom instead of identifying the
cell boundaries and subsequently cropping the image is that
the cells under examination have extremely inhomogeneous
contours and therefore this technique could have been counter-
productive. Furthermore, this technique allows us to preserve
information regarding the shape and size of the cells, which
instead was compromised using cropping techniques.

B. Visual Explainability

CAM (Class Activation Mapping) algorithms, in particular
Grad-CAM and Score-CAM, and structural similarity indices
(SSIM) were used to provide explainability for the models
obtained.

CAM-based algorithms make it possible to highlight the
portions of the image that have contributed most to the
classification, allowing us to understand the feature of the
problem that is most discriminating, as well as highlighting
possible regions not yet taken into account in current studies
and thus guiding future developments. Moreover, the heatmaps
are based on the VIRIDIS coloration >, regarding the pattern
importance during the classification process. The Gradient-
weighted Class Activation Mapping (Grad-CAM) algorithm
exploits the back-propagation of individual class weights to
highlight areas of interest. [22]

The Score-CAM (Score-weighted Class Activation Mapping)
algorithm solves the gradient saturation and false-confidence
problems of Grad-CAM using a different approach. [24]
Score-CAM uses a parameter defined as Channel-wise In-
crease of Confidence (CIC) to assess the contribution of each
feature map based on the class score.

To further increase the level of explainability of the models,
we compute the SSIM index, introduced in [13]. SSIM is an
index that takes into account variations in contrast, brightness,
and possible distortions relative to two versions of the same
image. From this, the Model Robustness Structural Similarity
Index (MR-SSIM) is derived. This index indicates how dif-
ferent two heatmaps produced by different CAM algorithms,

Shttps://cran.r-project.org/web/packages/viridis/vignettes/intro-to- viridis.
html
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Fig. 2: Representative images of the dataset

using the same model, are. This index takes values between
+1 and -1, where +1 indicates that the two images are equal.
High values of MR-SSIM make it reasonable to assume that
the highlighted portions of the images are indeed of interest as
they are highlighted by different visual explanation algorithms.

III. EXPERIMENTAL ANALYSIS AND RESULTS

In this section, we report the dataset under analysis and
all the results, quantitative and qualitative, extracted from the
images. In the final part, we discuss these results.

The used dataset derives from the Kaggle site, at the

following URL®. This dataset is composed of three directories
(training, testing and validation data), however, only the train-
ing_data directory is labeled to distinguish healthy subjects
(hem) from the disease patients (all). Moreover, this directory
is divided into three folders (fold_o, fold_1, and fold_2) which
themselves contain the two classes of patients. These classes
for each folder are unbalanced with a huge amount of healthy
subjects, so we decided to balance the classes in terms of
the sample number for a total of 6.099 images, and applying
the 80-10-10 splitting we obtain the division of samples as
follows:

Shttps://www.kaggle.com/datasets/andrewmvd/leukemia- classification
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Fig. 3: Epoch-accuracy trend for the MobileNet model

e 80% of images (4.764) to the training dataset
o 10% of images (666) to the validation dataset.
e 10% of images (669) to the testing dataset.

After the application of the pre-processing technique cited in
Section II, several CNNs are trained and tested on the dataset.
The networks are: ResNet50 [21], DenseNet [28], VGGI19
[25], Standard_CNN [2], InceptionV3 [26] and MobileNet [7].
The hyper-parameters settings are 50 epochs, 8 batch size,
0.0001 learning rate, and 224x224x3 image size. This optimal
combination is found by testing different combinations on all
networks. All training and tests were performed in a working
environment with an MSI Intel Core i7 with 16 GB RAM.

In table I are reported the metrics of the networks in terms
of accuracy, precision, recall, F-Measure, AUC, and loss.

As shown in Table I, the best performances are related to
the MobileNet and DenseNet networks with 94% in accuracy
precision and recall. Also, Inception V3, Standard_CNN and
resNet 50 show good results, 92%, 88% and 82%respectively.
From these results, it is possible to deduce that these networks
(i.e. MobileNet and DenseNet) can correctly classify healthy
and diseased blood cells. Vice versa, VGG19 reports the worse
metrics, so are not able to distinguish the two image classes.

In Figures 3 and 4 are shown for MobileNet network the
epoch-accuracy and epoch-loss trends, respectively.

In Figure 3 we can note good results during the training
phase, and a slight decrease for the validation phase. The ac-
curacy plot shows training accuracy (red dotted line) increases
and plateaus, while validation accuracy (blue line) increases
and stabilizes or decreases if overfitting occurs. This is an
expected behavior and both training and validation accuracy
confirm that the MobileNet model was able to learn the
differences between images belonging to different classes. The
opposite behavior is obtained from the (training and validation)
loss, shown in Figure 4 and this is another confirmation
that the model is correctly learning the differences between
healthy cells and ALL cells. Small oscillations in the validation
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Fig. 4: Epoch-loss trend for the MobileNet model
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Fig. 5: Confusion matrix of the MobileNet model.

accuracy and loss during the training of a CNN are normal
and can be attributed to various factors related to the training
process, data characteristics, and model behavior.

In Figure 5 is reported the confusion matrix for the Mo-
bileNet network. The matrix, in Figure 5 reveals the good
performance of the model, with higher values on the first
diagonal of the matrix, and this means that objects labeled
in a certain class are correctly predicted in the correct class.

A. CAMs algorithms evaluation

In this subsection, qualitative results are evaluated. This
evaluation is based on the CAM algorithms application, i.e.
Grad-CAM and Score-CAM, as mentioned in Section II.

150

100
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CNN Accuracy | Precision | Recall | F-Measure | AUC. | Loss
ResNet 50 0.82 0.82 0.82 0.82 0.87 1.80
DenseNet 0.94 0.94 0.94 0.94 0.98 0.22

VGG19 0.49 0.49 0.49 0.49 0.5 0.69
Standard_CNN 0.88 0.88 0.88 0.88 0.92 0.80
Inception V3 0.92 0.92 0.92 0.92 0.97 0.20
MobileNet 0.94 0.94 0.94 0.94 0.97 0.26

TABLE I: Metrics evaluation for tested DL models.

with Heatmap

Overlay

Fig. 7: Score-CAM of the MobileNet model.

Figures 6 and 7 are reported the Grad-CAM and Score-CAM
generated by the MobileNet network, taking into account the
same ALL image.

Starting from the left, the Figures are composed of the input
images, the generated heatmaps, and the overlapping of the
previous two.

Moreover, for the DenseNet network that reports optimal
quantitative results, an evaluation regarding the qualitative
point of view shows interesting heatmaps. Figures 8 and 9
are reported by the Grad-CAM and Score-CAM generated by
the DenseNet network, respectively.

In general terms, all the overlapped heatmaps highlight the
same ROI (Region Of Interest), improving the fact that differ-
ent explainability and localization techniques (Grad-CAM and
Score-CAM) with different models applications (MobileNet
and DenseNet) reveal almost the same pattern, i.e. the lower
right region. Moreover, the similarities regard not only the
highlighted areas but also the heatmap coloration. Heatmaps
generated by both methods use a color gradient (e.g., from
blue to yellow/red) to indicate the importance of different
regions. Red or warmer colors typically represent areas of high

Fig. 8: Grad-CAM of the DenseNet model.

with Heatmap

Overlay

Fig. 9: Score-CAM of the DenseNet model.

importance (ROIs), while blue or cooler colors represent areas
of low importance. The gradient of colors used to indicate
importance will be applied similarly, resulting in comparable
visual patterns. This region presents a protuberance on the
cell border, that can be related to the infant ALL presence.
These kinds of protuberance and irregularity are linked with
chromosomal abnormalities and genetic alteration due to the
infant ALL. So, these similar heatmaps increase the reliability
and trustworthiness of Al for medics; passing from a "black
box" model to a visually explainable approach, with not only
a quantitative classification, but also mainly a localization of
the relevant pattern for the decision-making, contributing to a
correct diagnosis.

In addition, the authors try to quantify the qualitative results
and improve the model robustness, by introducing the MR-
SSIM. Table IT shows the average similarity value between
the two sets of Grad-CAM and Score-CAM heatmaps for each
class and models.

Table II compares the heatmaps that are activated with the
Grad-CAM and Score-CAM algorithms on the same model
(i.e., the MobileNet and DenseNet). The MR-SSIM indices
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Similarity Index for heatmaps sets

Models Classes | MR-SSIM
) hem 0.888
MobileNet i 0300
hem 0.948
DenseNet  —r 0.945

TABLE II: MR-SSIM for the heatmaps sets..

report 0.88 for MobileNet and 0.94 for DenseNet; this means
that the generated heatmaps coming from two different CAMs
are very similar and identify the same areas with slight
differences. From the medical point of view, these analyses
represent a strong method to identify and locate ALL in
infants, with two robust and explainable deep-learning models
to support it for a correct diagnosis.

The combination of the CAMs and the MR-SSIM offers
benefits such as improved interpretability by highlighting
crucial areas within images, enhanced diagnostic accuracy
through precise region localization, and better image quality
assessment by measuring structural similarities to reference
images, ultimately leading to more reliable and effective
medical diagnoses; and represent the main novelty of our
work.

IV. RELATED WORK

In this section, we provide an overview of the existing
literature that pertains to the utilization of DL in the context
of ALL detection. Following this, we delve into a detailed
discussion of these research papers.

The dataset used by Rehman et al. [19] is categorized
into three distinct subtypes of ALL, namely L1, L2, and
L3, along with a healthy category named normal and it is
established through collaboration with hematologists. The in-
novative aspect of this approach is that it accepts bone marrow
images as input, carries out segmentation, and distinguishes
between normal and affected marrow or its subtypes reaching
an accuracy of 0.9778. The architecture proposed in this
article, which is implemented in MATLAB with computer
vision toolbox and Alexnet model on GPU, also provides the
segmentation of different blasts.

In the study developed by Zakir Ullah et al. [27], the
training process is initiated from the ground up. The use
of a network that is not pre-trained allows it to consider
and extract features that could be different from the ones
extracted from the pre-trained network. So This process aims
to determine parameter values that are highly pertinent and
result in improved convergence for the network. Different data
augmentation techniques are used with the aim of avoiding
overfitting and balancing the dataset. This work also consists
of the ECA module that extracts information from each
channel of VGG16 results and then combines them using a

weighted sum. This enables the DL model to assign greater
importance to particular elements within the input images.
When comparing the performance of the VGG16 model with
and without the ECA module, it became evident that the
attention mechanism significantly enhances model accuracy,
exhibiting a mean accuracy of 0.911.

In the article of Pansombut T et al. [?], the researchers
present a CNN named ConVNet for image-based classifica-
tion that employs traditional machine learning methods like
Support Vector Machines, Multi-Layer Perceptron, and Ran-
dom Forest for feature-based classification. Various features
are extracted from cell images to aid in classification. The
performance of ConVNet is described by an average accuracy
of 0.8174.

The study [10] introduces the ViT-CNN which is based on
two different methods used to extract and combine features
from cell images. A vision transformer model and CNN are
fused together in order to diagnose ALL. The ViT-CNN is able
to reach a classification accuracy of 99.03%

In [5], authors introduce a complete database of 15114 total
images made up in the All India Institute of Medical Sciences
(AIIMS) of New Delhi. It consists of images of cancer cells
collected from patients who suffered from B-ALL and others
from healty ones as controll for a total of 10661 cell images as
training set, 1867 as preliminary test set and 2586 as final test
set. This rich and accurated dataset was utilised for performing
a medical imaging challenge in IEEE International Symposium
on Biomedical Imaging (ISBI)-2019. In this occasion, many
teams brought in works based on CNN architectures and
carry out a score called F}. The highest score, achieved by
Yongsheng Pan et al. [18] is due to a neighborhood-correction
algorithm as a solution to this challenge. It involves three main
steps: the first is the production of initial labels and feature
maps for test data with a fine tuned pre-trained ResNet; the
second is the construction of a Fisher vector for every single
image using the previous found feature maps and the final
one consists of adjusting the initial labels evaluating similarity
with neighbors. This method reached 0.910 of the weighted
F} which is a balanced metric in order to take in count the
imbalance of the dataset.

The result obtained by Liu Y. et al. [12] is a F; of
0.876. In this study, a strategy based on two-stage training is
adopted. Firstly two Inception ResNets are used to be trained
on a subdivided dataset (A and B) and then the resulting
models from each one are matched and fine-tuned utilizing
the complete dataset.

This dataset is also used by other researchers as in [20]
where the previous one is subjected to data augmentation to
remove the imbalance due to the distribution of cancer and
healthy cells. So they shape a dataset made up of 12000
cells proportionally divided in ALL and HEM. They get a
resulting F; of 95.43% through a customized CNN named
ALL-NET which consists of a max pooling next to every
convolution layer, the batch normalization to ensure that the
data in motion are normalized, and a final dropout to keep
away from overfitting.
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In [1], the Resnet101 ensemble model is a combination of
several Resnet-101 models that are trained to identify ALL
in microscopic images through a majority voting strategy.
The most effective set of algorithm hyperparameters for the
pre-trained Resnet-101 model is identified using the Taguchi
experimental method. This method allows for a systematic and
efficient exploration of different combinations of hyperparam-
eter values to optimize the performance of the Resnet-101
model. They achieve an accuracy of 85.11% and an F’-score
of 88.94%.

In the work introduced by Mondal et al. [17] the initial
dataset from C_NMC_2019 is transformed into a balanced
one through various steps of pre-processing methods and the
original image size of 450 x 450 is reduced to 300 x 300 in
order to emphasize its central part with the result of reaching
a better ability to discriminate important features. Proposing
a weighted ensemble model, they achieve an Fj-score of
89.7%. The use of fine-tuning on various pre-trained CNN
models allow authors to build up a weighted ensemble model
to improve the classification. It is also reported a qualitative
evaluation of results based on the visualization of Grad-CAM.

In [11] Lamberti uses a Random Forest method to classify
images coming from two different datasets. The attention is
concentrated on the possible features that can be extracted
during the analysis such as color, shape and texture. In order
to make the process suitable for every image regardless of the
original dataset they belong, pre-processing is needed. Results
consist of an accuracy of 100% in the first dataset and a Fi-
score of 90.1% for the second one.

Table III provides a comparison between the works dis-
cussed in this section and the approach presented in this paper.
It highlights the key outcomes, the different datasets used, and
if the explainability is considered by authors for what concerns
automatic disease localization.

V. CONCLUSION AND FUTURE WORK

In conclusion, this paper aims to provide an automated
method for ALL detection in infants considering cytological
images of the blood cell to evaluate this disease. From the
results, the applied CNNs respond with good quantitative
results (94% in accuracy, precision and recall), in particular
MobileNet and DenseNet architecture. This work evaluates
mainly the qualitative aspect of tested models, introducing
CAM algorithms to visual localization of features in the
images that are related to the network classification and the
abnormal formation over the cells. Moreover, the application
of two distinguished CAMs increases the trustworthiness and
reliability of AI in healthcare. This means that this technol-
ogy doesn’t substitute human decisions, but it helps medics
during the diagnosis-making process, guaranteeing a practical
implementation.

Future research plans to focus on other blood and Lymphatic
disorders, focusing on the visual explainability to transform
the Al into Explainable-Al (XAI), including applications of
several CAMs and the similarity index. Parallel to this, an-
other field of research includes the use of algorithms aimed

at increasing the security of networks by applying various
techniques such as GANs (Generative Adversarial Networks).
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