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     Abstract—The estimation of hydrological components on a 

spatiotemporal scale poses a challenge for researchers as they 

develop data-driven tools that can be transferred to different 

regions with varying characteristics. In this study, we propose a 

hybrid architecture of a surrogate deep learning (DL) model 

based on the data obtained by the Wflow estimation. The choice 

of the target region is based on extensive lowlands and large 

variations in elevation, which makes it more challenging to 

improve the model’s accuracy. General tasks are addressed in 

this paper related to geodata frame structuring and 

preprocessing, DL model enhancement, and multiscale 

evaluation. Our contribution focuses on proposing a novel 

combination of LSTM, MLP, CNN, and CVAE to achieve 

robust outcomes on a finer scale, followed by an integration of 

FCM clustering for a comparative evaluation of the models’ 

performance. Training both LSTM and MLP using climate data 

and geophysical information of the catchment provides a 

performance comparable to the Wflow benchmark.  In addition, 

thanks to the FCM clustering which classifies the basin in 

homogenous subregions, we can gain extra insights as to how the 

models perform in the region as a whole. Our findings show that 

MLP performs very well in the first subregion, whereas LSTM 

outperforms the rest of the catchment. The integration of spatial 

information provided from both models via CNN_Hyb and 

CVAE_Hyb significantly enhances the overall spatiotemporal 

prediction across the entire region. However, clustering-based 

evaluation reveals the influence of LSTM and MLP on CNN 

accuracy, indicating persistent biases in the third subregion. In 

contrast, the utilization of CVAE_Hyb effectively mitigates this 

bias, resulting in a performance increase from 0.85 to 0.93. 

      Keywords—actual evapotranspiration, surrogate model, 

hybrid deep learning, clustering-based evaluation. 

I.  INTRODUCTION 

 

     Hydrological modeling has a crucial role in understanding 

and predicting the behaviors of water systems, providing 

valuable insights for water resource management, extreme 

events (flood and drought), and environmental planning [1].  

The traditional models are often based on the physical aspect, 

which describes the movement and distribution of water 

through complex systems. In practice, these models require a 

substantial amount of data and lengthy calibration procedures 

[2]. The exploration of artificial intelligence tools in 

hydrology between 2017 and 2020 led to increased adoption 

by researchers and a significant rise in hydrologic 

applications. An advancement were made in areas such as soil 

moisture (SM), and actual evapotranspiration (AE), through 

the use of data-driven models (DDM). [3]. The main concept 

of the following model’s category is to determine the 

relationship between input and target variables in the absence 

of a clear understanding of the physical process of a certain 

system [4]. Different model classes were distinguished from 

the DDM family such as tree-based, support vector-based, 

neuron network, hybrid, and fusion models [5]. In recent 

years, surrogate hydrological modeling has emerged as a 

transformative approach that serves as an efficient proxy for 

complex hydrological processes [6]. That allows bridging the 

gap between traditional physically based models and the 

demand for real-time, data-driven insights. Surrogate models 

are advantageous because they can assimilate a wide range of 

data sources, including satellite observations and ground 

measurements. Considering a wide range of influencing 

factors enhances the robustness of hydrological forecasts [7].  

     Several studies have recommended using deep learning 

(DL) models for hydrological prediction components on a 

spatiotemporal scale. Artificial neuron network, such as The 

Multi-Layer Perceptron (MLP) offers a straightforward and 

effective method for modeling nonlinear relationships at 

individual grid cells in hydrological data, primarily 

depending on how well the input data aligns with the target 

data [8]. In contrast, the Long Short-Term Memory (LSTM) 

model features a more intricate recurrent architecture with 

memory cells, specifically designed to manage 

spatiotemporal data effectively, and has demonstrated 

reliable accuracy in simulating hydrological variables such as 

SM and AE [9]. On the other hand, models such as 

Convolutional Neural Networks (CNNs), and Conditional 

Variational Autoencoders (CVAEs) represent a significant 

paradigm shift in predicting actual evapotranspiration, 

offering a robust framework for handling spatially distributed 

data in hydrological applications [10]. In terms of application, 

CNNs excel in capturing spatial dependencies directly from 

data, leveraging convolutional layers to detect intricate 
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terrain features. Meanwhile, CVAEs offer a probabilistic 

approach, combining convolutional layers with variational 

inference to learn spatial representations while explicitly 

modeling uncertainty. CNNs focus on spatial pattern 

recognition, and CVAEs provide probabilistic outputs, 

enabling uncertainty quantification and the generation of 

synthetic scenarios [10]. Recent advancements in 

evapotranspiration prediction involve hybrid DL models, 

especially when calibration parameters are limited and only 

climate data is available. To tackle these challenges, a 

combination of Recurrent Neural Networks (RNN) and 

Convolutional Neural Networks (CNN), such as the CNN-

BiLSTM model, has been proposed to enhance prediction 

accuracy by integrating spatial and temporal features with 

attention-based weighting  [11]. Additionally, Conv-LSTM 

and CNN-LSTM models have been developed for estimating 

AE, offering improved performance over traditional 

empirical models by effectively managing the complexities 

of limited data and capturing intricate patterns in the data 

[12]. A critical challenge for data-driven models is the 

difficulty in managing high-dimensional input features, 

which can significantly increase modeling costs. To address 

this issue, employing adaptive sampling strategies is crucial 

for efficient model training. Surrogate deep learning (SDL) 

models in hydrology offer a powerful alternative to 

traditional methods by using neural networks to approximate 

complex hydrological processes. SDL are widely used due to 

their capability to incorporate high-dimensional parameter 

fields, without requiring the sampling of grids [13]. Yet, 

analyzing the performance of DL in hydrological modeling is 

a big challenge, due to the big variability when dealing with 

spatiotemporal scales. However, when constructing an SDL 

model to simulate hydrological parameters, the non-

homogeneous geophysical data across spatial scales poses 

significant challenges, especially during the calibration 

phase. It refers to the variation in the statistical properties of 

the data across different locations, which can significantly 

impact the model’s accuracy. 

     In this paper, we addressed the challenge of minimizing 

the SDL biases across the entire region by proposing a new 

hybrid SDL model architecture for predicting spatiotemporal 

daily actual evapotranspiration (DAE) provided by the 

Wflow model, as its global, grid-based approach delivers 

high-resolution and precise simulations of hydrological 

processes [14]. The new architecture is based mainly on the 

integration of CNN and CVAE models to capture the spatial 

information provided in turn by LSTM and MLP. Therefore, 

helps to increase the accuracy of the SDL model, particularly 

in the area where the calibration parameters provide a 

nonhomogeneous pattern compared to the DAE ground truth 

data. The choice of CNN and CVAE model is based on the 

different techniques employed for the convolutional layer, 

which are tailored specifically for spatial scale. Several 

contribution tasks will be discussed in this paper to better 

understand how the proposed surrogate model can enhance 

DAE prediction to capture a finer scale. The proposed 

methodology employs climate data, including precipitation, 

temperature, and potential evapotranspiration, to process the 

DAE across spatiotemporal scales, while geophysical 

information of the catchment helps in spatial calibration. 

Choosing the optimal features for training the SDL model is 

achieved through quality assessment. Subsequently, a 

comparative analysis of DL-integrated models within the 

surrogate modeling framework is conducted using Fuzzy C-

Means (FCM) clustering. This method classifies the target 

basin into homogeneous subregions by leveraging ground 

truth parameters from the Wflow DAE dataset. Additionally, 

comparing these clusters with those derived from input 

feature classifications helps to identify areas prone to biases 

when using traditional models such as LSTM and MLP. The 

Adige catchment in northern Italy is selected due to its 

significant spatiotemporal variability in hydroclimate 

parameters, influenced by its diverse geomorphological 

characteristics, which poses a challenging task for DL 

models. 

   The paper is structured into three main sections, preceded 

by the introduction. Firstly, it presents a novel surrogate 

architecture for hydrological prediction. Subsequently, it 

discusses the results obtained from training and testing the 

models, focusing on the accuracy achieved through 

hyperparameter optimization. Finally, it integrates a 

clustering-based evaluation for a multiscale analysis of the 

model.      

II.  STUDY AREA 

 

    The Adige catchment is approximately 12,100 km2. In 

terms of its discharge, this catchment exhibits the same flow 

behaviors as other Alpine catchments, with peak flow usually 

occurring between June and September during the snow-

melting season [15]. Its main tributaries are located in the 

Alpine region between 45.8- and 46.6 degrees North latitude 

and 10.8 to 12.6 degrees East longitude (Fig 1), making them 

highly dependent upon snow dynamics. 
 

 
Fig. 1. Map of Adige catchment showing the elevations and discharge 
stations. 

    The effects of climate change have already had significant 

impacts on water resources management in this area, 

particularly in terms of hydropower generation and winter 

tourism [16]. Precipitation within the catchment is not 

uniform, with values ranging from 500 mm/yr in Val Venosta 
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(located in the north-western part of the catchment) to 1600 

mm/yr in the southern part of the basin, as reported by [17]. 

Since the catchment has a high elevation gradient, 

temperature also varies within it. The average monthly 

temperature ranges between 14°C in July and -4°C in January 

and December.    The Adige catchment encompasses an area 

of approximately 12,100 km2 as reported by [17]. 

III.  PROPOSED SURROGATE MODEL 

 

    The architecture of the proposed surrogate deep learning 

(SDL) model for predicting spatiotemporal daily actual 

evapotranspiration (DAE) is illustrated in Figure 2. This 

section provides a detailed overview of the hybrid model, 

beginning with data preparation and concluding with the 

acquisition of outcomes. The process involves generating 

target data for the surrogate model using the Wflow physical 

model, incorporating three dynamic climate-related features 

and 74 static parameters representing the catchment's 

geophysical characteristics. Following this, a preprocessing 

step is performed to enhance accuracy and reduce 

computational costs associated with the SDL algorithms. 

Typically, grid cell data from Netcdf files is utilized to train 

the SDL model, with dynamic features arranged in a 4D 

format (Longitude, Latitude, Time, climate parameters) and 

static features in a 3D format (Longitude, Latitude, 

geophysical variables) as shown in Figure 2. To ensure data 

quality, various tasks such as reshaping and masking are 

implemented to align with the dimensionality of the target 

data. Additionally, different strategies are applied to address 

missing data (MD) encountered during the masking process. 

Proper handling or exclusion of these gaps is crucial, as it can 

significantly influence the quality of hydrological models, 

depending on the extent of the MD. 

The second step in the preprocessing phase involves feature 

reduction to mitigate potential negative impacts on the 

accuracy of the SDL model. This is achieved through various 

analyses, including correlation analysis, homogeneity 

assessment, and comparison of data distributions between 

input and target variables. Figure 2 outlines the sequential 

processing steps proposed for the hybrid surrogate model. 

Initially, LSTM and MLP models are used to predict daily 

actual evapotranspiration (DAE) by leveraging climate and 

geophysical information from the catchment. The LSTM 

model effectively captures the temporal variability in climate 

features, providing preliminary results that require further 

spatial calibration using additional catchment information. In 

contrast, the MLP model, a simpler artificial neural network 

(ANN), efficiently consolidates and retains relevant data 

from both climate and geophysical parameters at each pixel. 

In the subsequent processing step, CNN and CVAE models 

are integrated into the surrogate architecture to combine the 

outputs of the LSTM and MLP models. The evaluation 

analysis assesses the performance of both models to 

determine which convolutional layer most effectively 

integrates the spatiotemporal information from the LSTM 

and MLP models. 

 
Fig. 2. Flowchart summarizing the new model architecture of hybrid 
surrogate-based deep learning model. Daily actual evapotranspiration 

(DAE); Precipitation (P); Temperature (T); Potential evapotranspiration 

(Ep); Climate parameter (CP); Static Parameter (SP); Time (T); Training 
(Tr); Testing (Te). 

 

   The CNN model uses a kernel function to capture the 

spatial variability of DAE, while the CVAE functions as a 

generative model that encodes and decodes high-dimensional 

data in a supervised manner, produces synthetic data samples 

that enhance the model's ability to perform spatiotemporal 

calibration. 

IV. RESULTS AND DISCUSSION 

    This section undertakes a statistical evaluation and 

comparative analysis of accuracy among the DL models 

proposed for the surrogate architecture. It begins by 

delineating the spatiotemporal variability of both input and 

target data, followed by the application of spatial correlation 

for feature selection. Subsequently, we present the outcomes 

of training and testing, including the hyperparameters’ 

optimization. Additionally, we introduce a pioneering 

evaluation approach employing FCM clustering to assess the 

performance of each model across various scales, 

encompassing spatial and temporal resolutions such as daily, 

mean daily, and seasonal. Several tests were used during the 
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analysis, such as coefficient of determination (R2), root mean 

square error (RMSE), mean absolute error (MAE), relative 

standard error (RSE), t-test, Kruskal-Wallis (Kwt), 

Kolmogorov-Smirnov (Ks), Hellinger Distance (HD), and 

Bhattacharyya Distance (BD) [18-24]. 

A. Data description and feature selection 

 

     In Figure 3, the spatiotemporal and spatial variability, 

along with the correlation analysis of both dynamic and static 

features selected for the proposed surrogate model, are 

depicted. In this analysis, a time of four years between 2019 

and 2022 is considered for both climate and Wflow data. The 

findings are visually presented through histograms and trend 

curves.  

 

  Fig. 3. Histograms of CV followed by trend plot of correlation coefficient 

(R), describing input features selection for surrogate-based DL model.  

   A robust correlation is observed on the spatiotemporal 

scale, between the daily potential evapotranspiration (DEP) 

and temperature (DT) compared to DAE, shown by an R 

score ranging from 0.75 to 0.90. While, a remarkable 

variability in DT compared to the target data is evident, 

potentially impacting the accuracy of the hydrological model 

on the spatiotemporal scale.  Within this analysis, we 

identified 12 out of 74 static parameters that exhibit a strong 

correlation with the mean DAE. Notably, dem_subgrid, 

Wflow_dem, hydrodem_avg_D8 and KsarVer_15.0cm 

demonstrate the highest correlation, exceeding 0.85 on the 

spatial scale. 

B. Deep learning models’ performance 

      The graphical visualization of the training and testing 

deep learning models to predict DAE between 2019 and 2022 

is summarized in Figure 4, complemented by statistical 

results shown in Table I. In this analysis, the used dataset is 

partitioned as follows: the period from 2019 to 2020 is 

dedicated to training both LSTM and MLP models, while 

data obtained in 2021 serve for testing both LSTM and MLP. 

Concurrently, the same 2021 dataset is used for training and 

testing both CNN_Hyb and CVAE_Hyb, with a focus on 

refining outcomes from previous processing phases. The 

period of 2022, is dedicated to validating and comparing the 

accuracy of all DL models across the entire region, 

maintaining uniformity in scale (Table I). During this 

analytical phase, various tests are conducted to evaluate the 

models' performance for both training and testing. Which is 

the assessment of absolute residual values via heatmaps, 

density curve analysis, and examination of loss function for 

200 epochs. Additionally, other metrics including R2, RMSE, 

HD, and BD provided in Figure 4 offer further insight into 

accuracy and similarity concerning data distribution in 

comparison to the physical assessment of DAE provided by 

Wflow. Notably, CNN_Hyb and CVAE_Hyb exhibit 

superior performance over LSTM and MLP across both 

training and testing phases. Particularly, CVAE_Hyb 

demonstrates exceptional results and enhanced stability 

throughout all periods, boasting R2 values of 0.95 and 0.94, 

respectively. On the contrary, LSTM exhibits slightly better 

performance compared to MLP, as indicated by the RMSE 

and R2 results presented in Figure 4. This distinction becomes 

more apparent when examining the heatmaps and density 

curves, particularly during the testing phase. Notably, the 

data generated by CVAE_Hyb is closely similar to the 

distribution of Wflow data, displaying minimal deviation 

from the actual data with HD and BD values of 10.30 and 

11.97, respectively. These results were attained following the 

optimization of each DL model's hyperparameters using 200 

epochs. The loss score illustrates the robustness and stability 

of the CVAE_Hyb model, with errors becoming more similar 

after training and testing using a few epochs. Additionally, 

Figure 4 shows the optimal hyperparameters for LSTM, 

MLP, CNN_Hyb, and CVAE_Hyb were identified at epochs 

161, 164, 179, and 116, respectively. 

   A statistical analysis of the predicted DAE data distribution 

and variability by each proposed DL model is shown in Table 

I, using different metrics.  CVAE_Hyb consistently 

outperforms the other models, as evidenced by its highest 

R2
Adj (0.950) and lowest MAE (0.130), indicating strong 

predictive accuracy. Additionally, both t-tests and KS tests 

statistic parameters reveal significant performance and the 

minimum data distribution differences, with CNN_Hyb and 

CVAE_Hyb consistently showing the lowest p-values, 

implying distinct superiority over LSTM and MLP. Overall, 

CVAE_Hyb emerges as the most accurate and statistically 

robust model, demonstrating its effectiveness in capturing 

complex patterns and accurately representing data 

distributions in hydrological modeling. 

C. FCM clustering-based evaluation  

     The multiscale evaluation of the DL model’s performance 

proposed for the new surrogate model architecture is 

extensively analyzed in this subsection, using FCM 

clustering. Various techniques have been applied in this step, 

including the detection of the middle pixel of each 

homogeneous regions which serve as reference points for 

analyzing the entire subregion for comparison.
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Fig. 4.  Statistical assessment of DL model training and testing for daily actual evapotranspiration (DAE) prediction during 2019 and 2021, including heat 

maps of absolute residuals, density curves, and loss plots. Hellinger Distance (HD); Bhattacharyya Distance (BD). 

Table I. Statistical performance of surrogate-based DL models for daily 

actual evapotranspiration prediction in 2022. 

 
Adjusted coefficient of Determination (R2

Adj); Mean Absolute Error (MAE); Root Squared Error 

(RSE); Kruskal-Wallis (kwt). Kolmogorov-Smirnov test (KS). 

 

It represents a consistent visualization for all the surrounding 

pixels. FCM, as a model, can capture spatial scale; hence, we 

integrate a set of statistical information about forcing climate 

data and Wflow_DAE, such as the min, mean, max, median, 

Q1, Q3, and skewness values. This helps in providing 

comprehensive information about spatiotemporal variability. 

Different tests have been applied in this evaluation under 

daily, mean daily (shown in Figure 6), and seasonal (shown 

in Figure 7) scales. Figure 5 shows the regional classification 

obtained by applying the FCM model using input features and 

Wflow_DAE. The results highlight how preprocessing 

features can impact model accuracy. Typically, the data 

distribution in the 1st and 2nd clusters shows notable 

similarity. 

 
Fig. 5. Comparative assessment of FCM clustering within the Adige basin, 

using statistical parameters of input features (a) and target features (b). Input 

features: climate and static features; Target feature: actual 
evapotranspiration. 

   In contrast, when using the selected features, both LSTM 

and MLP models fail to produce satisfactory outcomes under 

spatial scale in the southern part of the Adige basin. This 

creates challenges for our work, particularly in analyzing and 

proposing a more accurate surrogate model to predict data in 

this subregion.  

Index LSTM MLP CNN_Hyb CVAE_Hyb 

R2Adj 0.890 0.850 0.920 0.950 

MAE 0.220 0.250 0.190 0.130 

RSE 0.290 0.320 0.270 0.200 

ttest_Pvalue 0.040 0.009 0.005 0.001 

ttest_statistic 163.830 37.910 32.870 17.280 

kwt_Pvalue 0.040 0.030 0.005 0.001 

kwt_statistic 5293.060 4072.160 17082.410 112924.000 

KS_Pvalue 0.021 0.035 0.009 0.001 
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Fig. 6. An integrated evaluation of DL models' accuracy in predicting daily actual evapotranspiration (DAE) through FCM clustering-based assessment for 

2022.  Coefficient of Determination (R2); Root Mean Square Error (RMSE). 
 

    Figure 6, displays the results of predicting DAE in 2022 

using all the SDL models proposed for this paper. The 

analysis is based mainly on the results provided by all models 

in each cluster under a daily scale, given by regression plots 

between predicted and ground truth data, and heatmaps of 

mean DAE for the entire region. 
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      The results reveal a strong performance of the 

CVAE_Hyb model in all subregions, where all metrics 

indicate its stability and robustness in predicting DAE 

throughout the whole region, given by R2 ranging between 

0.93 and 0.98. The model effectively addresses issues 

presented by the non-homogenous input features in the 3rd 

subregion due to its ability to capture high resolution via 

generating synthetic data. By contrast, the other models 

exhibit some outliers, particularly in the 3rd cluster. 

Additionally, CNN_Hyb demonstrates an improvement 

compared to LSTM and MLP; however, in terms of accuracy, 

CVAE_Hyb proves to be more accurate. These results are 

further shown by the RMSE frequencies, where in all cases, 

CVAE_Hyb exhibits the minimum interval values of RMSE 

distribution, shown graphically with a left-side skewness, 

indicating that most values are lower than the mean RMSE. 

In the first cluster, characterized by high elevation (> 2000 

m), the MLP outperforms the LSTM throughout the year. 

However, the LSTM proves more effective in predicting 

DAE in areas with elevations below 1000 m, as shown in 

Figures 1 and 6. 

     The spatiotemporal visualization of the predicted DAE 

distribution from various DL models presented in this paper 

is compared to the Wflow results using scatter plots. Figure 7 

illustrates these comparisons, aiding in the diagnostic of data 

trends and variability relative to the previously demonstrated 

results. This analysis significantly contributes to 

understanding the accuracy of DL models across different 

scales. During the autumn period, results reveal a bias from 

the LSTM model in all regions, where its outcomes tend to 

overfit the Wflow data. In contrast, the CVAE_Hyb model 

demonstrates stability and robustness in capturing all scales, 

showing a data distribution similar to the ground truth. 

Additionally, the results indicate that during the dry period, 

particularly in summer, there is a similarity among all 

outcomes provided by the DL models across the entire region. 

 

 

 

 
Fig. 7. Scatter plots displaying the seasonal daily actual evapotranspiration predicted by different DL models during 2022, across three specific subregions 
delineated by FCM clustering. Daily actual evapotranspiration (DAE). 

V.  CONCLUSIONS AND FUTURE WORK 

    Our overarching aim is to predict spatiotemporal daily 

actual evapotranspiration (DAE) using a small set of input 

features. This investigation proposes a novel surrogate model 

architecture. A preprocessing step was applied in this work to 

select the most efficient input features using for models’ 

prediction. The application of FCM clustering shows a 

crucial approach to anticipate information on the impact of 

input features on the models' accuracy. A notable degree of 

similarity was observed within the first cluster when 

comparing the distribution provided by the input data and the 

ground truth DAE. High performance was achieved in this  

subregion using relatively simple models such as LSTM and 

MLP, yielding R2 values of 0.94 and 0.98, respectively.
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Conversely, in the rest of the catchment, particularly in the 

third subregion where the input data are non-homogeneous 

compared to the DAE ground truth, some biases were 

observed when using both models, requesting the integration 

of CNN and CVAE. The selection of these models aims to 

assess their convolutional characteristics in capturing spatial 

scales using the information provided by the preceding 

models. Furthermore, results demonstrate an improvement in 

DAE prediction accuracy when employing both CNN_Hyb 

and CVAE_Hyb. However, CNN_Hyb performance depends 

upon the quality of results provided by MLP and LSTM. 

Contrariwise, CVAE_Hyb emerges as the best model, 

exhibiting robustness and stability throughout the entire 

region, with a noteworthy 8% improvement in accuracy 

observed within the third region, given by an R2 value of 

0.93. 

      Looking ahead, we plan to enhance the proposed model's 

applicability by incorporating a preprocessing step. Refining 

the calibration parameters is essential for increasing the 

accuracy of the SDL model by analyzing the importance of 

features within each subregion and making them more 

homogeneous to perform effectively across the entire area. 

Furthermore, employing more advanced DL techniques 

tailored to different climate scenarios will enable the model 

to better manage the complex patterns of climate in various 

subregions. 
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