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Abstract—It is important to analyze online data whose char-
acteristic changes over time, such as financial and coronavirus
infection data. Many studies have been conducted. In general,
ensemble-based learning methods perform well as analysis meth-
ods, and methods such as SEA, DWM, and ARF have been
proposed. In addition, the change in characteristics over time is
called concept drift, and its classification and detection methods
have been studied. This paper reports the adverse effects of a
characteristic that has yet to be considered in the classification
of concept drifts and proposes a solution. The characteristic
discussed in this paper is the ratio of explanatory variables
whose characteristics change. This paper shows that when this
ratio is large, it harms the ensemble-based learning methods. In
addition, this paper evaluates a solution method to show that the
method can improve the accuracy of the analysis. Since a naive
implementation of the proposed method is inefficient, this paper
also reports a beam search implementation.

Index Terms—Online data, Concept drift, Ensemble learning,
Exhaustive analysis

I. INTRODUCTION

Analyzing online data, such as financial and coronavirus
infection, is important. A typical characteristic of these online
data is that the characteristics of these data change over
time. This characteristic change over time is called concept
drift, and many studies have been conducted (See [1] and [2]
for surveys). In such studies, its classification methods [3]
[4], drift detection method (DDM [5] and Adwin [6], etc.)
are exhaustively studied. Furthermore, methods for comparing
various analysis methods are also studied [7]. As far as
we surveyed, the misclassification rate of ensemble learning
methods, such as Adaptive random forests (ARF) [8], tends to
be small.

This report will introduce a characteristic that needs better
analysis in concept drift studies. This paper reports its adverse
effects on ensemble learning methods and proposes a solution.
Since a naive implementation of the proposed solution is inef-
ficient, this paper also reports a beam search implementation.

The mainstream research has categorized concept drifts into
four types: “Sudden”, “Gradual”, “Incremental”, and “Reoc-
curring” [2]. “Sudden” changes the relationship between the
explanatory and explained variables at some point. “Gradual”
and “Incremental” change the relationship slowly. “Reoccur-
ring” repeats the changes multiple times. Unlike previous stud-
ies, this paper argues that “the ratio of explanatory variables
whose characteristics change” is important for classifying
concept drift. No studies, as far as we surveyed, discussed
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the importance and adverse effects of similar classifications
of concept drift.

In the discussion below, the explained variable y has a
binary true or false value, and the explanatory variable x
is an n-dimensional scalar vector. Among the scalar values
composing the vector of explanatory variable x, only n’(≤n)
values are assumed to affect the value of explained variable y.
The remaining (n-n’) values are unrelated to the relationship
between the explained variable y and the explanatory variable
x. Furthermore, concept drift is assumed to be caused by
only one of n’ scalar values changing its characteristics.” For
example, if we learn the relationship between y and x as an
n-dimensional linear discriminant function, only one of the n
regression coefficients is assumed to change.1

It is a strong assumption that only one regression coefficient
changes. However, considering a situation where the scalar
values that make up the vector of explanatory variables x
are independent, it is natural to assume that they do not
change their characteristics simultaneously. We think this is
a reasonable assumption to start discussing for “The ratio of
explanatory variables whose characteristics change is impor-
tant for the classification of concept drift.” In other words, “the
ratio of explanatory variables whose characteristics change,”
which is the focus of discussion in this study, is 1/n’.

In this paper, after Section II surveys related works, Section
III explains our hypothesis of the importance of “the ratio of
explanatory variables whose characteristics change” on con-
cept drift. Then, Section IV proposes a method to reduce the
misclassification rate of ARF when “The ratio of explanatory
variables whose characteristics change” is large. Since a naive
implementation of the proposed method is inefficient, Section
IV also reports a beam search implementation and confirms
the proposed method’s advantage through experiment. Finally,
Section V summarizes our findings.

II. RELATED WORK

A. Classification of Concept Drift

As mentioned above, the characteristics of financial data,
coronavirus infection data, etc., change over time. Analysis of
changing online data is important, and numerous studies are
being conducted (See [1] and [2] for surveys).

The classification of concept drift is also explained in [2].
The mainstream research has categorized concept drifts into

1It is assumed that only n’(≤n) values affect the value of the explained
variable y. So, to be precise, “Only one of the n’ regression coefficients
changes, and (n’-1) regression coefficients do not change. The remaining (n-
n’) regression coefficients remain 0.”
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four types: “Sudden”, “Gradual”, “Incremental”, and “Reoc-
curring” [2]. “Sudden” changes the relationship between the
explanatory and explained variables at some point. “Gradual”
and “Incremental” change the relationship slowly. “Reoccur-
ring” repeats the changes multiple times.

Unlike previous studies, this paper argues that “the ratio of
explanatory variables whose characteristics change” is impor-
tant for classifying concept drift. As far as we surveyed, no
studies discussed the importance of similar classifications of
concept drift.

B. Ensemble learning for Concept Drift Analysis

As far as we surveyed, the misclassification rate of ensemble
learning methods on data with concept drift is small. Thus,
various methods have been studied, such as Streaming ensem-
ble algorithm (SEA) [9], Weighted ensemble classifiers [10],
Dynamic weighted majority (DWM) [11], Adaptive classifiers
ensemble system (ACE) [12], Dynamic streaming random
forests [13], Adwin bagging and ASHT bagging [14], Leverag-
ing bagging [15], Online smooth-boost (OSBoost) [16], Online
accuracy updated ensemble (OAUE) [17], and Compacted ob-
ject sample extraction (COMPOSE) [18]. Among them, there
are many cases where the misclassification rate of ARF [8] is
lower than that of other methods. Its low misclassification rate
also has been reported in [7].

Figure 1 shows the algorithm of ARF. ARF creates a model
like other online learning methods by ensembling multiple
weak learners. As far as we understand, the characteristics
of ARF are: 1) It is based on Random Forests [19] as an
ensemble method (lines 10 and 16 of Figure 1); 2) While other
methods change the corresponding weak learner to a new one
when they detect concept drift for each weak learner, ARF
creats a backup tree for the weak learner when concept drift
is suspected (lines 11 and 12 of Figure 1). When concept drift
is detected, ARF replaces the weak learner with the backup
tree (lines 13 and 14 of Figure 1).

III. PRELIMINARY EXPERIMENTS AND HYPOTHESES

A. Comparison of misclassification rate

Table I shows the results of preliminary experiments that
compare misclassification rates of previously proposed drift
detection methods: i.e., DDM, Adwin, ARF, and Without
(analyze data using CART without detecting drift). ARF is
a representative ensemble-based learning method, and DDM
and Adwin are non-ensemble-based learning methods. Here,
scikit-learn [20] and scikit-multiflow [21] were used for the
experiments, and default values were used for parameters
without optimization.

Souza et al. [7] collected the data used in the experiments
to compare misclassification rates of previously proposed drift
detection methods. The results in the table are those of re-
experiments by the authors of this paper using CART (weka
was used in the original paper [7]). Data exceeding 10,000
pieces in length were sampled at equal intervals to reduce
experimental time, and the experiment was performed using
a maximum of 10,000 pieces of data. As shown in Table I,

m: Maximum features evaluated per split
n: Total number of trees (n = |T|)
δw: Warning threshold
δd: Drift threshold
c(·): Change detection method
S: Data stream
B: Set of background trees
W(t): Tree t weight
P(·): Learning performance estimation function

1: procedure ARF(m,n, δw, δd)
2: T ← CreateTrees(n)
3: W ← Initialize Weights(n)
4: B← ∅
5: while Has Next(S) do
6: (x, y) ← Next(S)
7: for all t ∈ T do
8: ŷ ← predict(t, x)
9: W(t) ← P(W (t), ŷ, y)

10: RFTreeTrain(m, t, x, y)
11: if C(δw, t, x, y) then ▷ Warning detected?
12: B(t) ← Create background tree for t
13: if C(δd, t, x, y) then ▷ Drift detected?
14: t ← B(t) ▷ Replace t by background
15: for all b ∈ B do
16: RFTreeTrain(m, b, x, y)

Fig. 1. Algorithm of ARF (from [8])

TABLE I
COMPARISON OF MISCLASSIFICATION RATES USING PUBLISHED DATA

ID Data Name without DDM Adwin ARF
1 insect-abrupt (bal) 53.9 47.9 41.2 31.7
2 insect-abrupt (imbal) 38.1 37.4 36.6 26.7
3 insect-gradual (bal) 56.2 40.9 33.4 25.0
4 insect-gradual (imbal) 40.2 35.3 33.1 24.6
5 insect-inc-abrupt (bal) 50.8 45.7 45.3 30.3
6 insect-inc-abrupt (imbal) 38.0 39.0 39.4 29.3
7 insect-inc-reoc (bal) 56.0 55.7 40.7 27.7
8 insect-inc-reoc (imbal) 38.7 38.8 40.1 29.3
9 insect-inc (bal) 53.6 53.2 52.3 39.3
10 insect-inc (imbal) 39.1 38.2 35.4 26.1
11 insect-out-of-control 41.9 41.9 41.9 38.8
12 NOAA 27.5 27.6 27.4 22.8
13 airlines 40.2 40.1 40.9 38.5
14 chess 31.1 31.1 31.2 33.0
15 covtype 32.9 32.5 31.1 26.8
16 elec 22.9 22.7 21.5 18.3
17 gassensor 37.3 21.5 16.4 4.0
18 kddcup99 1.4 1.4 1.4 1.0
19 poker-lsn 43.7 41.8 38.6 34.3
20 powersupply 86.0 85.5 85.9 82.5
21 rialto 67.6 67.6 68.7 63.9
22 sensorstream 93.0 93.0 92.3 81.2
23 keystroke 13.0 13.0 13.1 6.1
24 luxembourg 0.00 0.00 0.00 2.3
25 outdoor 88.8 23.0 77.9 20.9
26 ozone 7.2 7.6 7.6 6.4

Underline is the minimum misclassification rate (%)
The misclassification rates are the averages of 10 experiments.
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the preliminary experiments obtained roughly the same results
reported in [7]:

• The misclassification rate of ARF is the lowest for many
problems (specifically, 24 out of 26 data).

• However, there are problems with DDM being better than
ARF (Data 14 and 24).

• Also, as pointed out by [7], there were cases where the
drift detection methods could not reduce the misclassifi-
cation (Data 14 and 24).

B. Interpretation of preliminary experiments

As described above, the ARF’s misclassification rate is often
lower than that of non-ensemble methods such as DDM. Based
on this experimental result, this paper assumes the following
hypothesis:

Hypothesis 1:
In addition to the concept drift classification previ-
ously studied, i.e., Sudden, Gradual, Incremental, and
Reoccurring [2], “The ratio of explanatory variables
whose characteristics change” is essential. If this
ratio is small, ensemble learning-based methods have
the advantage of analyzing the data.

Hypothesis 2:
If this ratio is large, the misclassification rate of
ensemble learning-based methods might be high.

When 1) data that includes concept drift are to be analyzed,
and 2) there are many explanatory variables, and 3) only
one of them changes its characteristics and causes its concept
drift; “The ratio of explanatory variables whose characteristics
change” is small. If such data is analyzed using the procedure
shown in Figure 1, the tree with the highest importance to
the explanatory variable whose characteristic changed will be
replaced by its backup. The learning results regarding the
explanatory variables whose characteristics have not changed
are maintained by continuously using other trees.

On the other hand, DDM and Adwin observe changes
in the misclassification rate. When the deterioration of the
misclassification rate exceeds a threshold, learning is restarted
using data from that point.2 Thus, DDM and Adwin must
re-learn the explanatory variables whose characteristics have
stayed the same. This may increase their misclassification
rates.

Ensemble learning methods such as ARF eliminate the
need to re-learn the discriminative aspects of explanatory
variables whose characteristics have remained the same. This
reduces the ensembled model’s misclassification rate to less
than that of the methods that re-learn from that point. On
the other hand, if “the ratio of explanatory variables whose
characteristics change” is large, the characteristics of many
explanatory variables change at the same time. Restarting from
that point is better than replacing only one part of the tree. In
other words, in the ensemble learning methods, the presence

2Strictly speaking, there are two types of thresholds: “warning” and
“detection”. At the time of “detection”, the data is traced back to the point
where the “warning” threshold is reached. However, explanatory variables
remain whose characteristics have not changed before the “warning” point.

of weak learners that still need to be replaced may reduce the
learning speed.

IV. RELATIONSHIP BETWEEN CONCEPT DRIFT ANALYSIS
AND THE RATIO OF EXPLANATORY VARIABLES WHOSE

CHARACTERISTICS CHANGE

This section reports the experiments to verify the hypothesis
explained in the previous section and proposes a method
designed based on that hypothesis.

A. Artificial data to verify hypothesis

If “the ratio of explanatory variables whose characteristics
change” affects the misclassification rate of ensemble learning
methods such as ARF, the effect can be verified by examining
the misclassification rate of artificial data by changing the
ratio. In addition, two types of “change in characteristics”
are considered: A case in which the characteristic suddenly
changes at a particular time and a case in which it changes
slowly. Based on the above idea, the following artificial data
1-1∼5 and 2-1∼5 are generated.

Random Sequence 1∼5
Random number sequence with mean 0, standard
deviation 1, and length 600.

Explanatory variable sequences 1-2∼5 and 2-2∼5
Random sequence 2∼5 itself.

Explanatory variable 1-1
Add 0, 0.5, 1.0, 1.5, 2.0, 2.5 to the data from 1-
100, 101-200, 201-300, 301-400, 401-500, 501-600
of Random Sequence 1.

Explanatory variable 2-1
A random number sequence that adds “0.005*(num-
ber of positions in the sequence)” to Random Se-
quence 1.

data 1-n
A data sequence comprises 600 pairs of five explana-
tory variables and a true/false explained variable. The
value of the i-th explanatory variable is created from
explanatory variable 1-i, and the explained variable
is

(
∑n

i=1variable in random sequence i) > 0
data 2-n

A data sequence comprises 600 pairs of five explana-
tory variables and a true/false explained variable.
The value of the i-th explanatory variable is created
from the explanatory variable 2-i, and the explained
variable is

(
∑n

i=1variable in random sequence i) > 0

The true or false value of the explanatory variables is
determined by whether the sum of the corresponding variables
in the random sequence is positive or negative. In addition,
data 1-1∼5 is divided into six sections. Since the difference
between the explanatory variable given to the learning system
and variables in random sequence changes step-wise, the iden-
tification aspect of explanatory variable 1-1∼5 changes step-
wise. For data 2-1∼5, the identification aspect of explanatory
variable 2-1∼5 changes gradually for each item.
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In these data, the number of explanatory variables whose
characteristics change due to the difference from the variable
used to calculate the value of the explained variable is always
1. On the other hand, the number n’ of explanatory variables
related to the value of the explained variable changes to 1∼5.
Thus, “the ratio of explanatory variables whose characteristics
change” changes from 1/1, the maximum value by definition,
to 1/5.

For example, the truth value of data 1-3 is determined
depending on whether the sum of random variables 1, 2, and
3 is positive or negative (n’=3). Explanatory variables 2 and
3 of data 1-3 have the values used to calculate the truth value
of the explained variable. Their identification aspect remains
the same. On the other hand, the identification surface of
explanatory variable 1-1 changes every 100 items. “The ratio
of explanatory variables whose characteristics change” for this
data 1-3 is 1/3.

B. Proposed methods and Experiment for verification

To check the hypothesis, the misclassification rate of simple
CART (“without” in Table II), DDM, Adwin, ARF, and
enhancement of ARF (“SARF-b” and “SARF-e” in Table II)
are measured using above artificial data. ARF (ARF) was
chosen as a representative ensemble-based learning method.
DDM and Adwin were chosen as representative non-ensemble-
based learning methods.

If Hypothesis 1 is correct, the misclassification rate of ARF
will increase for data 1-1 and data 2-1 where “the ratio of
explanatory variables whose characteristics change” is large,
i.e., 1. Also, the misclassification rate of ARF will decrease
for data 1-5 and data 2-5 where “the ratio of explanatory
variables whose characteristics change” is small, i.e., 1/5.
Furthermore, the misclassification rates of DDM and Adwin
are also investigated to compare them with ARF. If Hypothesis
1 is correct, the misclassification rates of DDM and Adwin
would be small when “the ratio of explanatory variables whose
characteristics change” is large, e.g., 1,

To check Hypothesis 2 and propose a counter-measurement,
this paper introduces a mechanism to restart ARF’s learning.
SARF-e (Select start point for ARF - Exhaustively) and SARF-
b (Select start point for ARF - by Beam search) are the
methods that introduce the restart mechanism into ARF. At
each time point t, SARF-e checks the misclassification rate of
all the possible ARF models (See Figure 2 for the idea and
Figure 3 for pseudo code). Here, ARF models are generated
by changing the start point of learning from 0 to t-1 (Figure 3
line 5). If the assumed start point is t’, the misclassification
rate of the corresponding model is calculated based on the
results from time t’ to t-1 (Figure 3 line 7). Supposing the ARF
model that starts learning from time point T has a minimum
misclassification rate, data at time point t is analyzed using the
ARF model that starts learning from time point T (Figure 3
line 13). Selection of the best time point T for learning works
as the restart mechanism.

Since SARF-e’s computing cost is O(t2) (See double loop
in Figure 3 line 5 & 6), SARF-b tries to reduce it using beam
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Fig. 2. Basic idea of SARF-e

1: function MODEL(y, x)
2: return ARF Model for estimating yt from xt−1

▷
3: function SELECT(y, x)
4: remove last item from both y and x
5: for s in [all possible start point in y] do
6: for l in [positions in “subsequence of y

starting from s”] do
7: m = MODEL([subsequence of y from s to l],

[subsequence of x from s to l])
8: est[s, l] = m(x[l])
9: return s that gives minimum error rate in est[s,:]

▷
10: function SARF-E(y, x)
11: s = SELECT(y, x)
12: m = MODEL([subsequence of y start from s],

[subsequence of x start from s])
13: return m(xt) ▷ i.e., return estimation of yt+1

Fig. 3. Algorithm of SARF-e

1: FIFO: array of ARF models
2: BEAM: array of ARF models
3: BEST: best ARF model in BEAM

▷
4: function SARF-B PREDICTION(NewData)
5: return prediction of NewData based on BEST

▷
6: procedure SARF-B LEARNING(NewData)
7: Make new ARF model NEW using NewData.
8: Update ARF models in FIFO and BEAM using NewData.
9: Exclude oldest ARF models in FIFO as OLD

10: Add NEW into FIFO
11: Add OLD into BEAM
12: Select best ARF models among those in BEAM as BEST
13: Remove worst ARF model from BEAM

Fig. 4. Algorithm of SARF-b
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TABLE II
COMPARISON OF MISCLASSIFICATION RATES USING ARTIFICIAL DATA

ID without DDM Adwin ARF SARF-e SARF-b
Data1-1 25.4 7.2 21.8 19.2 8.6 10.2
Data1-2 20.3 20.6 20.3 19.0 15.9 17.3
Data1-3 21.7 21.7 21.6 18.7 18.8 18.3
Data1-4 23.7 23.8 23.8 19.6 21.9 21.4
Data1-5 29.8 30.0 29.9 20.7 23.2 23.0
Data2-1 27.8 11.5 22.4 21.6 9.7 10.7
Data2-2 20.1 20.0 20.0 20.2 15.6 16.4
Data2-3 23.0 22.9 22.9 18.4 19.7 19.6
Data2-4 22.5 22.3 22.7 18.7 21.7 22.4
Data2-5 29.9 29.9 29.8 20.9 23.4 22.9

Bold double underline is the minimum misclassification rate (%)
Single underline is runner-up.
The misclassification rates are the averages of 10 experiments.

search (See Figure 4 for pseudo code). SARF-b selects the
best n ARF models at each time point t (Figure 4 line 13).
Then, it checks those n ARF models at the next time point t+1
(Figure 4 line 8). As shown in Figure 4, SARF-b also checks
the most recent n’ models (Handling of FIFO in Figure 4)
since the misclassification accuracy of the recent model tends
to be unstable. Also, our implementation of SARF-b does not
exclude the oldest model from BEAM in line 13 Figure 4.
Since the oldest model in BEAM and the model of ARF are
the same, this implementation makes comparing SARF-b with
ARF easy.

C. Results and considerations of experiments using artificial
data

Table II shows the experimental results. The misclassifica-
tion rates in the table are the averages of 10 experiments. The
table shows that the results generally support Hypotheses 1
and 2. That is:

• As Hypothesis 1 suggests, the misclassification rate of
ARF is lower than that of DDM and Adwin for data
1-3∼5 and data 2-3∼5, which have a small “ratio of
explanatory variables whose characteristics change”.

• For data 1-1 and 2-1, which have a large “ratio of
explanatory variables whose characteristics change”, the
misclassification rate of ARF is higher than that of DDM.

Furthermore
• Both SARF-e and SARF-b reduce the misclassification

rates of ARF for data 1-1∼2 and data 2-1∼2, which have
a large “ratio of explanatory variables whose characteris-
tics change.”

In addition to the proposition set as a hypothesis, the following
can be gleaned from the results.

• The effect of reducing the DDM misclassification rate
is large for data 1-1 and data 2-1, where “the ratio of
explanatory variables whose characteristics change” is
large. This is because the drift significantly changes the
misclassification rate. Thus, the drift is easily detected by
DDM, which depends on changes in the misclassification
rate.
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Fig. 5. Misclassification rate of CART and ARF

Figure 5 shows the change in misclassification rate when
CART and ARF are used as learning methods for data 1-1
and 1-5. When data 1-1 is analyzed using CART (Figure
5(a)), the misclassification rate changes significantly at
the time when drift occurs.
On the other hand, when data is analyzed using ARF or
“the ratio of explanatory variables whose characteristics
change” is small as data 1-5, the misclassification rate
changes slowly. It makes the detection by DDM difficult.
Also, ARF supports drift handling, which makes drift
points unclear.

• The exhaustive search method, i.e., SARF-e, is a method
that exhaustively tests the learning start point and makes
the prediction based on the model learned using the found
best start point (Figure 2).
Initially, we thought that “the learning start point where
the result of one point before is the best” is the same
as the “starting point of the drift”. However, SARF-

2024 Fifth International Conference on Intelligent Data Science Technologies and Applications (IDSTA)



e sometimes fails to decrease the misclassification of
ARF. We believe this is because “the learning start point
where the result of one point before is the best” is not
the “starting point of the drift”, i.e., “best learning start
point.” This, i.e., the difference between “the learning
start point where the result of one point before is the
best” and “best learning start point”, is left as a future
research issue.

In the experiments, the beam size of SARF-b is set to
50. Precisely, the length of FIFO (See Figure 4) is set to
10, and the length of BEAM is set to 40. The length of
FIFO was selected to stabilize the misclassification of ARF.
While the period is short, the misclassification of ARF varies.
However, ten seems enough in our experiments to get a stable
misclassification rate. Figure 6 shows the effect of the length
of BEAM. In Figure 6, the horizontal axis is the length of
BEAM, and the vertical axis is the number of misclassifica-
tions in the preliminary experiments. Although the number of
misclassifications varies depending on the BEAM length, 40
was chosen in the experiments shown in Table II.

D. Experimental Results on published data

Table III compares the misclassification rates of SARF-e and
SARF-b with previous methods on public data [7]. SARF-e has
10 out of 26 data with the lowest misclassification rate, and
SARF-b has 9 out of 26 data with the lowest misclassification
rate. SARF-e or SARF-b reduced the misclassification rate of
ARF on 20 data. These results clearly show the effect of the
mechanism to restart ARF’s learning.

Here, unlike artificial data, the “ratio of explanatory vari-
ables whose characteristics change” in public data is unknown.
It is also unclear whether the assumption made at the be-
ginning of this paper that “only one explanatory variable
has changed” characteristics is satisfied. In the published
data, independence among variables is not mentioned, and
the possibility remains that multiple explanatory variables are
changing their characteristics simultaneously.

In this sense, the significance of experimental results using
public data is limited in verifying the hypothesis that is
the subject of this paper. The characteristics of public data
require further analysis. However, experimental results show
that there is public data that SARF-e and SARF-b improve the
misclassification rate of ARF. This is considered a result that
reinforces the validity of the research.

Furthermore, SARF-e, which combines ARF and the ex-
haustive search method, must improve its long execution
and processing times. Table IV shows ARF, SARF-e, and
SARF-b elapsed time. While ARF completes its processing
in seconds, SARF-e requires several hours, depending on the
data. This study purposely investigated the misclassification
rate of SARF-e in order to verify Hypothesis 2, However,
SARF-e is difficult to use when solving large-scale problems
practically.

In contrast, the elapsed time of SARF-b is much shorter
due to multiprocessing (Table IV). However, even though the
CPU used in the experiment supports 64 threads and is larger
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Fig. 6. Effect of BEAM width on SARF-b’s misclassification
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TABLE III
COMPARISON OF MISCLASSIFICATION RATES USING PUBLISHED DATA

ID without DDM Adwin ARF SARF-e SARF-b
1 53.9 47.9 41.2 31.7 29.6 29.7
2 38.1 37.4 36.6 26.7 26.6 26.5
3 56.2 40.9 33.4 25.0 23.4 23.8
4 40.2 35.3 33.1 24.6 24.3 24.1
5 50.8 45.7 45.3 30.3 28.7 29.6
6 38.0 39.0 39.4 29.3 29.9 29.4
7 56.0 55.7 40.7 27.7 26.6 26.9
8 38.7 38.8 40.1 29.3 30.3 29.6
9 53.6 53.2 52.3 39.3 40.2 39.1
10 39.1 38.2 35.4 26.1 26.7 26.0
11 41.9 41.9 41.9 38.8 38.2 37.8
12 27.5 27.6 27.4 22.8 25.1 26.0
13 40.2 40.1 40.9 38.5 40.9 41.1
14 31.1 31.1 31.2 33.0 32.8 32.6
15 32.9 32.5 31.1 26.8 24.2 24.6
16 22.9 22.7 21.5 18.3 17.0 17.2
17 37.3 21.5 16.4 4.0 3.9 3.8
18 1.4 1.4 1.4 1.0 0.9 0.8
19 43.7 41.8 38.6 34.3 36.7 37.7
20 86.0 85.5 85.9 82.5 71.7 73.8
21 67.6 67.6 68.7 63.9 59.3 59.0
22 93.0 93.0 92.3 81.2 78.7 79.6
23 13.0 13.0 13.1 6.1 5.2 5.7
24 0.00 0.00 0.00 2.3 1.2 0.6
25 88.8 23.0 77.9 20.9 22.5 23.0
26 7.2 7.5 7.6 6.4 6.2 6.2

Underline is the minimum misclassification rate (%)
The misclassification rates are the averages of 10 experiments.

TABLE IV
ELAPSED TIME

ID Length Attributes ARF(sec) SARF-e(sec) SARF-b(sec))
1 10000 33 176.3 26708.9 687.5
2 10000 33 154.8 24391.3 705.3
3 10000 33 136.3 24214.7 626.5
4 10000 33 151.9 23883.1 665.9
5 10000 33 145.8 23113.4 658.1
6 10000 33 162.6 23905.8 712.6
7 10000 33 149.8 21084.5 645.5
8 10000 33 152.6 24387.3 718.5
9 10000 33 185.9 26320.9 769.9

10 10000 33 160.2 23730.0 712.8
11 10000 33 458.0 65203.2 1421.9
12 10000 8 57.9 11471.7 346.4
13 10000 7 63.0 11046.0 316.0
14 534 7 4.6 26.5 18.9
15 10000 54 90.3 15925.9 459.8
16 10000 8 56.0 10771.8 347.9
17 10000 128 172.6 27544.6 775.9
18 10000 41 72.9 11101.8 434.9
19 10000 11 91.8 12718.4 360.3
20 10000 2 65.4 8672.6 337.1
21 10000 27 182.9 26075.2 766.0
22 10000 5 344.7 43534.2 1149.2
23 1600 10 13.8 212.5 57.7
24 1901 30 13.7 317.7 77.4
25 4000 21 119.2 6315.8 363.5
26 2534 72 26.2 787.8 115.5

AMD Ryzen Threadripper 2990WX
128GByte memory (32 Core 64 Thread)
The Elapsed times are the averages of 10 experiments.

than the BEAM size, SARF-b requires 3∼4 times more time
than ARF. This is because the processing time of ARF at each
point in SARF-b varies greatly.

V. CONCLUSION

This paper investigates the influence of the “ratio of ex-
planatory variables whose characteristics change” on online
data analysis, including concept drift.

• Previous studies classify concept drift into four classes:
e.g. Sudden, Gradual, Incremental, and Reoccurring. In
addition to this traditional concept drift classification, this
paper reports a new aspect of concept drift classification;
the “ratio of explanatory variables whose characteristics
change”.

• Ensemble learning methods are excellent at analyzing
online data with concept drift where “the ratio of explana-
tory variables whose characteristics change” is small.

• Ensemble learning methods may have a high misclas-
sification rate when analyzing online data with a large
ratio of “the explanatory variables whose characteristics
change”.

This was confirmed through experiments using artificial data.
In addition, this paper proposes methods to search for

the start point of ARF analysis as a countermeasure against
the increase in the misclassification rate when “the ratio of
explanatory variables whose characteristics change” is large.
SARF-e exhaustively searches for the best start point, and
SARF-b searches for it by beam search. SARF-e and SARF-
b reduced the misclassification rate of ARF on 20 out of 26
public data.
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